首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the solvents on particle size and morphology of ZnO is investigated. The optical properties of nano ZnO were studied extensively. During this study, zinc oxalate was prepared in aqueous and organic solvents using zinc acetate and oxalic acid as precursors. The thermo-gravimetric analysis (TGA/DTA) showed formation of ZnO at 400 °C. Nano-size zinc oxide was obtained by thermal decomposition of aqueous and organic mediated zinc oxalate at 450 °C. The phase purity was confirmed by XRD and crystal size determined from transmission electron microscopy (TEM) was found to be 22–25 nm for the aqueous and 14 –17 nm in organic mediated ZnO. Scanning electron microscope (SEM) also revealed different nature of surfaces and microstructures for zinc oxide obtained in aqueous and organic solvents. The UV absorption spectra showed sharp absorption peaks with a blue shift for organic mediated ZnO, due to monodispersity and lower particle size. Sharp peaks and absence of any impurity peaks in photoluminescence spectra (PLS) complement the above observations.  相似文献   

2.
Microwave-assisted chemical bath deposition (MACBD) is an emerging route for rapid synthesis of films and nanostructured particles. In this paper we report MACBD of ZnO rod-array films on bare glass substrates from an aqueous bath of tetra ammonium zinc complex. The deposition time is reduced to about 1 min as compared to around 60 min for conventional CBD. X-ray diffraction study shows that as-deposited films are uniaxially out-of-plane textured along the c-axis. Scanning Electron Microscopy reveals that the films consist of elongated elliptical tapered rods of diameters 250 to 350 nm. Atomic Force Microscopy shows that the films consist of about 350 nm grains. The RMS roughness is about 60 nm. The energy band gap is 3.27 eV as estimated from optical data. The films are n-type with electrical conductivity of 1 × 10− 4 S/cm.  相似文献   

3.
Zinc oxide nanorods have been synthesized by microwave assisted method using zinc nitrate, ethylene glycol and sodium hydroxide as a precursors. The material was characterized by XRD, SEM, EDAX and UV–Visible techniques. XRD analysis revealed all the relevant Bragg’s reflections for wurtzite (hexagonal phase) structure of zinc oxide. The average particle size was obtained 34 nm from the Williamson–Hall plot. The value of particle size determined from XRD was in good agreement with the SEM and TEM results. The direct optical band gap was found to be 3.13 eV.  相似文献   

4.
Undoped and Cobalt (Co) doped zinc oxide (ZnO & CZx) nanoparticles were synthesized by Solvothermal method. The samples were studied by X-Ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), UV–Vis spectroscopy and Scanning and Transmission Electron Microscopy (SEM & TEM). Moreover the gas sensing properties of the nanoparticles for methane gas took place. Purity of the samples and Co concentration was investigated by EDS and ICP spectroscopy respectively. XRD results described the hexagonal wurtzite structure for all the samples in which crystallinity and the crystallites size decreased with increase of Co doping level. Using UV–Vis spectroscopy the band gap energy was evaluated and redshift of band gap energy was observed by increasing of Co concentration. SEM images demonstrated that nanoparticles were agglomerated with increase of Co doping level. TEM images revealed the nanoparticles size in the range 11–44 nm. Methane sensing properties was enhanced after Co doping of the ZnO nanoparticles for Co concentration up to 4%.  相似文献   

5.
Nanocrystalline Zn1−x Ni x O (x = 0.00, 0.02, 0.04, 0.06, 0.08) powders were synthesized by a simple sol–gel autocombustion method using metal nitrates of zinc, nickel and glycine. Structural and optical properties of the Ni-doped ZnO samples annealed at 800 °C are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis using X-rays (EDAX), UV–visible spectroscopy and photoluminescence (PL). X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a hexagonal wurtzite structure and secondary phase (NiO) was observed with the sensitivity of XRD measurement with the increasing nickel concentration (x ≥ 0.04). The lattice constants of Ni-doped ZnO nanoparticles increase slightly when Ni2+ is doped into ZnO lattice. The optical absorption band edge of the nickel doped samples was observed above 387 nm (3.20 eV) along with well-defined absorbance peaks at around 439 (2.82 eV), 615(2.01 eV) and 655 nm (1.89 eV). PL measurements of Ni-doped samples illustrated the strong UV emission band at ~3.02 eV, weak blue emission bands at 2.82 and 2.75 eV, and a strong green emission band at 2.26 eV. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.  相似文献   

6.
PC50%/PS50% polymer blend nanocomposites, undoped and doped with different concentration of ZnO nanoparticles (1, 2, 3 wt%), have been prepared using solution casting method. Structural and optical studies have been performed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Ultraviolet–Visible spectroscopy (UV–Vis). ZnO nanoparticles have been synthesized by chemical route method. The nanostructure of the ZnO nanoparticles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical Absorption Spectra has been used to study optical constants of prepared blend nanocomposites. Energy band gap of PC/PS – ZnO blend nanocomposites have been calculated by using Tauc relation. The band gap of the nanocomposites decreases as ZnO wt% increases. Extinction coefficient, refractive index and real & imaginary part of dielectric constants increase with increase in ZnO nanoparticles wt%.  相似文献   

7.
Platinum nanoparticles were successfully synthesized on porous carbon aerogel with narrow pore size distribution by ambient pressure drying method. Platinum doped carbon aerogels were synthesized by sol-gel polymerization of resorcinol with furfural in non aqueous medium followed by ambient pressure drying and pyrolysis of organic gel. These samples were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Flow Chemisorption. TEM and XRD results showed that size of platinum nanoparticle varies between 2 and 5 nm depending on platinum loading and pyrolysis temperature. Hydrogen pulsed chemisorption showed 26.5% dispersion of platinum nanoparticles in carbon aerogel.  相似文献   

8.
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.  相似文献   

9.
The study is focussed on synthesis and characterisation of a new sol–gel derived composite system consisting of nanocrystalline apatite, bioactive glass and gold nanoparticles, which are of interest both for regenerative medicine and for specific medical applications of the releasable gold nanoparticles. Samples dried at 110°C and then heat treated for 30 min at 300 and 500°C were investigated by thermal analysis (DTA/TG), X-ray diffraction (XRD), UV–VIS–NIR, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Photoelectron(XPS) spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Gold nanoparticles and nanocrystalline apatite are developed already after heat treatment at 300°C. XPS analysis clearly revealed the presence of both metallic and ionic gold species. The development of gold nanoparticles was evidenced by UV–VIS–NIR and TEM analysis, and their size increased from few nanometers to 25 nm by increasing the treatment temperature from 300 to 500°C. The bioactivity of the samples immersed in simulated body fluid was demonstrated by XRD and SEM results.  相似文献   

10.
Synthesis of nickel nano-particles with a coating of a hydrophilic surfactant has been carried out by use of sodium borohydride and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. It is observed that an ideal temperature range for formation of nickel nanoparticles is between 50 and 100 °C. Phase-pure nano-nickel can be obtained by use of SFS. X-ray diffraction measurements (XRD) revealed broad pattern for fcc crystal structure of nickel metal with particle diameter of about 10-15 nm. Scanning Electron Microscopy (SEM) showed that there is clustering of spherical particles in dry state and Transmission Electron Microscopy (TEM) gave a particle size of about less than 10 nm.  相似文献   

11.
Cu-incorporated nanocrystalline ZnO thin films were deposited on glass substrate by sol–gel. To a solution of zinc acetate 2-hydrate in dimethyl formamide, calculated quantities of copper acetate were added. The clear solution, obtained after 2 h of continuous stirring, was coated on ITO plates. Pre-annealing at 250 °C was followed by sintering at 400, 500, and 600 °C. XRD analysis revealed dominant evolution of hexagonal ZnO with a possible simultaneous growth of meta-stable cubic ZnO. AFM and SEM analysis indicated preferential growth of nanocrystallites along c-axis. Optical characterization led to two prominent absorption thresholds in the UV region; one matching with the band gap of bulk ZnO and the second at slightly higher energy, suggesting quantum confinement effect in nanocrystallites. Cu incorporation influenced the two band gap energies differently. Photoelectrochemical splitting of water using 1% at. Cu–ZnO film sintered at 600 °C resulted in 141% gain in photocurrent at zero bias.  相似文献   

12.
A microwave-assisted solution-phase approach has been applied for the synthesis of zinc oxide nanostructures. The synthesis procedure was carried out by using two reagents: hydrazine hydrate and ammonia. Flower shaped particles were obtained with hydrazine hydrate whereas mainly spherical agglomerated particles were observed with ammonia. The nanostructures were influenced by microwave irradiation time, reagent concentration and molar ratio of the precursors. High crystalline materials were found without the need of a post-synthesis treatment. The average crystalline size of ZnO nanostructures has been analyzed by X-ray Diffraction (XRD) pattern and estimated to be 18 nm. The presence of flower shaped zinc oxide with nanorods arranged has been confirmed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) micrographs. The samples were further analyzed by Fourier Transform InfraRed (FT-IR), Thermogravimetric Analysis (TGA) and photoluminescence spectroscopic techniques.  相似文献   

13.
Nanosized catalysts composed of metallic copper supported on zinc oxide have been synthesized by the polyol process. Average crystallite size of copper was between 10 and 45 nm. Cu/ZnO catalyst particles were characterized by various techniques, such as X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), and dynamic light scattering analysis (DLS).  相似文献   

14.
Spherical zinc oxide (ZnO) nanoparticles had been successfully synthesized through decomposing zinc borate nanoplatelets at high temperature. The resulted ZnO nanospheres were characterized by X-ray diffraction (XRD), which indicated that ZnO had the hexagonal structure. Field-emission-scanning electron micrographs (SEM) revealed that ZnO nanoparticles had perfect spherical shape with narrow size distribution (average diameters 50 nm). These nanoparticles showed a broad emission band centered at 438 nm using an excitation wave of 325 nm at room temperature. Moreover, the sample was characterized by N2 adsorption-desorption and the pore size distribution showed a sharp peak at 3.1 nm.  相似文献   

15.
ZnO nanostructures have been synthesized in a controlled manner by varying the pH of the precursor solution using hydrothermal technique. The morphological changes of the prepared ZnO nanostructures have been investigated in the range of pH 5–10. Radial hexagonal rod-like shape is formed at lower pH values of 5 and 6 whereas, flower-like shape is obtained for higher pH values of 9 and 10. Flake-like structure is observed at moderate pH of 8. The prepared ZnO nanostructures have been characterized using X-ray diffraction technique (XRD), energy dispersive X-ray analysis, scanning electron microscope and FTIR spectroscopy. XRD results show that the prepared ZnO nanostructures exhibit hexagonal wurtzite structure. The growth mechanism suggests that the supersaturation of the precursor results in various nucleation habits, which induce the formation of ZnO nanostructures with different morphologies. UV–Vis spectroscopy and photoluminescence were applied to study the optical properties. The photoluminescence spectrum demonstrated two emission bands, a near band edge emission in the UV region and a strong deep band emission in the visible region. The change in pH from 5 to 10 results in band gap variations of 3.47–3.97 eV and blue-shift in the peak emission of visible PL from 560 to 460 nm.  相似文献   

16.
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol–gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 °C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60–80 nm in size is really an aggregate of many small crystallites of around 10–20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10−5–10−6 (Ω cm)−1. The optical study showed that the spectra for all samples give the transparency in the visible range.  相似文献   

17.
Nanocrystalline ZnO particles were synthesized from an aqueous solution composed of zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and urea (H2NCONH2). A precipitating precursor, basic zinc carbonate (Zn5(CO3)2(OH)6), was first formed by hydrothermally treating the solution at 120 °C for 2–4 h. Nanocrystalline ZnO particles were then obtained by calcining the precursors at 350–650 °C for 0.5–2 h. The synthesis products were characterized using thermogravimetry–differential scanning calorimetry–mass spectrometry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence techniques. Based on the experimental results, a possible reaction mechanism for the ZnO formation was proposed. The effects of experimental parameters (namely, the hydrothermal treatment time, the calcination time, and the calcination temperature) on the characteristics of the resulting ZnO products (i.e., the crystalline size and the photoluminescence properties) were analyzed by the Taguchi method to attain the optimum synthesis conditions. By using the appropriate parameters derived from this method, we verified that the optimized synthesis provided a yield of ~70% and that the resulting ZnO particles possessed the characteristics of a ~25 nm crystalline size and a satisfactory photoluminescence property.  相似文献   

18.
In this study, ZnO nanoparticles with different cobalt concentration were prepared by a simple and rapid method. This method is based on a short time solid state milling and calcinations of zinc acetate, cobalt acetate, and citric acid powders. The samples were characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared (FTIR), photoluminescence, and UV-vis. spectroscopy. It was shown that a very low substitution of Co (less than 1% of molecular weight) has little effect on the lattice parameters of ZnO and significantly decreases the band gap (E g ) value of the synthesized ZnO:Co nanoparticles. Calculation based on the XRD data shows that the average crystallite sizes of ZnO particles are nearly 18 nm. Photoluminescence spectroscopy shows that many defects such as interstitial zinc, zinc vacancy, and exciton recombination are responsible for the observed optical properties. Magnetization measurements which were performed by using a superconducting quantum interference device (SQUID) magnetometer determine the paramagnetic behavior for all samples due to the absence of oxygen vacancy.  相似文献   

19.
In this work we study the influence of Fe ions doping concentration on the optical properties of ZnO inverse opals. The ZnO inverse opals were obtained by impregnating the PMMA opal template with a zinc acetate solution. After the solidification of this solution in the void spaces of the synthetic PMMA and the thermal removal of the PMMA template, it remained a regular 3-D ordered porous ZnO solid which constitutes an inverse opal. The ZnO:Fe inverse opals were obtained following the same procedure but using zinc acetate and iron nitrate solutions instead. Scanning Electron Microscopy (SEM) images show the close-packed self-assembly of PMMA opals, the surface morphology of ZnO inverse opals formed by spherical void spaces of 295 nm diameter, and a discontinuous surface morphology of the ZnO:Fe inverse opals. The XRD diffractogram of ZnO inverse opals shows peaks characteristic of ZnO with wurtzite phase, and the micro-Raman spectrum shows phononic lines corresponding also to the same crystallographic structure. The energy band gap of ZnO and ZnO:Fe inverse opals were calculated from their absorption spectra giving the values of 3.2 and 2.4 eV, respectively.  相似文献   

20.
Cerium oxide nanoparticles have been synthesized by microwave method using cerium nitrate, propylene glycol and ammonia as a precursors. The material was characterized by XRD, SEM, TEM and UV–visible techniques. XRD analysis revealed all the relevant Bragg’s reflections for face centered cubic crystal structure of cerium oxide. The average particle size was obtained 9 nm from the extrapolation of the Williamson–Hall plot. The value of particle size determined from XRD was in good agreement with the SEM and TEM results. The direct optical band gap was found to be 3.12 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号