首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

2.
Distribution effects such as diffuse global illumination, soft shadows and depth of field, are most accurately rendered using Monte Carlo ray or path tracing. However, physically accurate algorithms can take hours to converge to a noise‐free image. A recent body of work has begun to bridge this gap, showing that both individual and multiple effects can be achieved accurately and efficiently. These methods use sparse sampling, GPU raytracers, and adaptive filtering for reconstruction. They are based on a Fourier analysis, which models distribution effects as a wedge in the frequency domain. The wedge can be approximated as a single large axis‐aligned filter, which is fast but retains a large area outside the wedge, and therefore requires a higher sampling rate; or a tighter sheared filter, which is slow to compute. The state‐of‐the‐art fast sheared filtering method combines low sampling rate and efficient filtering, but has been demonstrated for individual distribution effects only, and is limited by high‐dimensional data storage and processing. We present a novel filter for efficient rendering of combined effects, involving soft shadows and depth of field, with global (diffuse indirect) illumination. We approximate the wedge spectrum with multiple axis‐aligned filters, marrying the speed of axis‐aligned filtering with an even more accurate (compact and tighter) representation than sheared filtering. We demonstrate rendering of single effects at comparable sampling and frame‐rates to fast sheared filtering. Our main practical contribution is in rendering multiple distribution effects, which have not even been demonstrated accurately with sheared filtering. For this case, we present an average speedup of 6× compared with previous axis‐aligned filtering methods.  相似文献   

3.
Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.  相似文献   

4.
We propose a unified rendering approach that jointly handles motion and defocus blur for transparent and opaque objects at interactive frame rates. Our key idea is to create a sampled representation of all parts of the scene geometry that are potentially visible at any point in time for the duration of a frame in an initial rasterization step. We store the resulting temporally‐varying fragments (t‐fragments) in a bounding volume hierarchy which is rebuild every frame using a fast spatial median construction algorithm. This makes our approach suitable for interactive applications with dynamic scenes and animations. Next, we perform spatial sampling to determine all t‐fragments that intersect with a specific viewing ray at any point in time. Viewing rays are sampled according to the lens uv‐sampling for depth‐of‐field effects. In a final temporal sampling step, we evaluate the predetermined viewing ray/t‐fragment intersections for one or multiple points in time. This allows us to incorporate all standard shading effects including transparency. We describe the overall framework, present our GPU implementation, and evaluate our rendering approach with respect to scalability, quality, and performance.  相似文献   

5.
Recent advances have made interactive ray tracing (IRT) possible on consumer desktop machines. These advances have brought about the potential for interactive global illumination (IGI) with enhanced realism through physically based lighting. IGI, unlike IRT, has a much higher computational complexity. Furthermore, since non‐primary rays constitute the majority of the computation, the rays are predominantly incoherent, making impractical many of the methods that have made IRT possible. Two methods that have already shown promise in decreasing the computational time of the GI solution are interleaved sampling and adaptive rendering. Interleaved sampling is a generalized sampling scheme that smoothly blends between regular and irregular sampling while maintaining coherence. Adaptive rendering algorithms adjust rendering quality, non‐uniformally, using a guidance scheme. While adaptive rendering has shown to provide speed‐up when used for off‐line rendering it has not been utilized in IRT due to its naturally incoherent nature. In this paper, we combine adaptive rendering and interleaved sampling within a component‐based solution into a new approach we term adaptive interleaved sampling. This allows us to tailor new adaptive heuristics for interleaved sampling of the individual components of the GI solution significantly improving overall performance. We present a novel component‐based IGI framework for which we achieve interactive frame rates for a range of effects such as indirect diffuse lighting, soft shadows and single scatter homogeneous participating media.  相似文献   

6.
Interactive global illumination for fully deformable scenes with dynamic relighting is currently a very elusive goal in the area of realistic rendering. In this work we propose a system that is based on explicit visibility calculations and which is highly efficient and scalable. The rendering equation defines the light exchange between surfaces, which we approximate by subsampling. By utilizing the power of modern parallel GPUs using the CUDA framework we achieve interactive frame rates. Since we update the global illumination continuously in an asynchronous fashion, we maintain interactivity at all times for moderately complex scenes. We show that we can achieve higher frame rates for scenes with moving light sources, diffuse indirect illumination and dynamic geometry than other current methods, while maintaining a high image quality.  相似文献   

7.
Ambient occlusion is a cheap but effective approximation of global illumination. Recently, screen‐space ambient occlusion (SSAO) methods, which sample the frame buffer as a discretization of the scene geometry, have become very popular for real‐time rendering. We present temporal SSAO (TSSAO), a new algorithm which exploits temporal coherence to produce high‐quality ambient occlusion in real time. Compared to conventional SSAO, our method reduces both noise as well as blurring artefacts due to strong spatial filtering, faithfully representing fine‐grained geometric structures. Our algorithm caches and reuses previously computed SSAO samples, and adaptively applies more samples and spatial filtering only in regions that do not yet have enough information available from previous frames. The method works well for both static and dynamic scenes.  相似文献   

8.
Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including indirect lighting and arbitrary shading, is a long‐standing challenge. Prior work has shown that complex lighting can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation sequences becomes the problem of efficiently shading many surface samples from many lights across several frames. This paper presents a tensor formulation of the animated many‐light problem, where each element of the tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects, complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require fast previews of complex animation.  相似文献   

9.
We present a photon mapping technique capable of computing high quality global illumination at interactive frame rates. By extending the concept of photon differentials to efficiently handle diffuse reflections, we generate footprints at all photon hit points. These enable illumination reconstruction by density estimation with variable kernel bandwidths without having to locate the k nearest photon hits first. Adapting an efficient BVH construction process for ray tracing acceleration, we build photon maps that enable the fast retrieval of all hits relevant to a shading point. We present a heuristic that automatically tunes the BVH build's termination criterion to the scene and illumination conditions. As all stages of the algorithm are highly parallelizable, we demonstrate an implementation using NVidia's CUDA manycore architecture running at interactive rates on a single GPU. Both light source and camera may be freely moved with global illumination fully recalculated in each frame.  相似文献   

10.
Area lights add tremendous realism, but rendering them interactively proves challenging. Integrating visibility is costly, even with current shadowing techniques, and existing methods frequently ignore illumination variations at unoccluded points due to changing radiance over the light's surface. We extend recent image‐space work that reduces costs by gathering illumination in a multiresolution fashion, rendering varying frequencies at corresponding resolutions. To compute visibility, we eschew shadow maps and instead rely on a coarse screen‐space voxelization, which effectively provides a cheap layered depth image for binary visibility queries via ray marching. Our technique requires no precomputation and runs at interactive rates, allowing scenes with large area lights, including dynamic content such as video screens.  相似文献   

11.
We present an unbiased method for generating caustic lighting using importance sampled Path Tracing with Caustic Forecasting. Our technique is part of a straightforward rendering scheme which extends the Illumination by Weak Singularities method to allow for fully unbiased global illumination with rapid convergence. A photon shooting preprocess, similar to that used in Photon Mapping, generates photons that interact with specular geometry. These photons are then clustered, effectively dividing the scene into regions which will contribute similar amounts of caustic lighting to the image. Finally, the photons are stored into spatial data structures associated with each cluster, and the clusters themselves are organized into a spatial data structure for fast searching. During rendering we use clusters to decide the caustic energy importance of a region, and use the local photons to aid in importance sampling, effectively reducing the number of samples required to capture caustic lighting.  相似文献   

12.
Adaptive filtering techniques have proven successful in handling non‐uniform noise in Monte‐Carlo rendering approaches. A recent trend is to choose an optimal filter per pixel from a selection of non spatially‐varying filters. Nonetheless, the best filter choice is difficult to predict in the absence of a reference rendering. Our approach relies on the observation that the reconstruction error is locally smooth for a given filter. Hence, we propose to construct a dense error prediction from a small set of sparse but robust estimates. The filter selection is then formulated as a non‐local optimization problem, which we solve via graph cuts, to avoid visual artifacts due to inconsistent filter choices. Our approach does not impose any restrictions on the used filters, outperforms previous state‐of‐the‐art techniques and provides an extensible framework for future reconstruction techniques.  相似文献   

13.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

14.
We present photon beam diffusion, an efficient numerical method for accurately rendering translucent materials. Our approach interprets incident light as a continuous beam of photons inside the material. Numerically integrating diffusion from such extended sources has long been assumed computationally prohibitive, leading to the ubiquitous single‐depth dipole approximation and the recent analytic sum‐of‐Gaussians approach employed by Quantized Diffusion. In this paper, we show that numerical integration of the extended beam is not only feasible, but provides increased speed, flexibility, numerical stability, and ease of implementation, while retaining the benefits of previous approaches. We leverage the improved diffusion model, but propose an efficient and numerically stable Monte Carlo integration scheme that gives equivalent results using only 3–5 samples instead of 20–60 Gaussians as in previous work. Our method can account for finite and multi‐layer materials, and additionally supports directional incident effects at surfaces. We also propose a novel diffuse exact single‐scattering term which can be integrated in tandem with the multi‐scattering approximation. Our numerical approach furthermore allows us to easily correct inaccuracies of the diffusion model and even combine it with more general Monte Carlo rendering algorithms. We provide practical details necessary for efficient implementation, and demonstrate the versatility of our technique by incorporating it on top of several rendering algorithms in both research and production rendering systems.  相似文献   

15.
We present a novel multi‐view, projective texture mapping technique. While previous multi‐view texturing approaches lead to blurring and ghosting artefacts if 3D geometry and/or camera calibration are imprecise, we propose a texturing algorithm that warps (“floats”) projected textures during run‐time to preserve crisp, detailed texture appearance. Our GPU implementation achieves interactive to real‐time frame rates. The method is very generally applicable and can be used in combination with many image‐based rendering methods or projective texturing applications. By using Floating Textures in conjunction with, e.g., visual hull rendering, light field rendering, or free‐viewpoint video, improved rendering results are obtained from fewer input images, less accurately calibrated cameras, and coarser 3D geometry proxies.  相似文献   

16.
The visibility function in direct illumination describes the binary visibility over a light source, e.g., an environment map. Intuitively, the visibility is often strongly correlated between nearby locations in time and space, but exploiting this correlation without introducing noticeable errors is a hard problem. In this paper, we first study the statistical characteristics of the visibility function. Then, we propose a robust and unbiased method for using estimated visibility information to improve the quality of Monte Carlo evaluation of direct illumination. Our method is based on the theory of control variates, and it can be used on top of existing state‐of‐the‐art schemes for importance sampling. The visibility estimation is obtained by sparsely sampling and caching the 4D visibility field in a compact bitwise representation. In addition to Monte Carlo rendering, the stored visibility information can be used in a number of other applications, for example, ambient occlusion and lighting design.  相似文献   

17.
We propose an analysis of numerical integration based on sampling theory, whereby the integration error caused by aliasing is suppressed by pre‐filtering. We derive a pre‐filter for evaluating the illumination integral yielding filtered importance sampling, a simple GPU‐based rendering algorithm for image‐based lighting. Furthermore, we extend the algorithm with real‐time visibility computation. Free from any pre‐computation, the algorithm supports fully dynamic scenes and, above all, is simple to implement.  相似文献   

18.
The efficiency of Monte Carlo algorithms for light transport simulation is directly related to their ability to importance‐sample the product of the illumination and reflectance in the rendering equation. Since the optimal sampling strategy would require knowledge about the transport solution itself, importance sampling most often follows only one of the known factors – BRDF or an approximation of the incident illumination. To address this issue, we propose to represent the illumination and the reflectance factors by the Gaussian mixture model (GMM), which we fit by using a combination of weighted expectation maximization and non‐linear optimization methods. The GMM representation then allows us to obtain the resulting product distribution for importance sampling on‐the‐fly at each scene point. For its efficient evaluation and sampling we preform an up‐front adaptive decimation of both factor mixtures. In comparison to state‐of‐the‐art sampling methods, we show that our product importance sampling can lead to significantly better convergence in scenes with complex illumination and reflectance.  相似文献   

19.
Environment‐mapped rendering of Lambertian isotropic surfaces is common, and a popular technique is to use a quadratic spherical harmonic expansion. This compact irradiance map representation is widely adopted in interactive applications like video games. However, many materials are anisotropic, and shading is determined by the local tangent direction, rather than the surface normal. Even for visualization and illustration, it is increasingly common to define a tangent vector field, and use anisotropic shading. In this paper, we extend spherical harmonic irradiance maps to anisotropic surfaces, replacing Lambertian reflectance with the diffuse term of the popular Kajiya‐Kay model. We show that there is a direct analogy, with the surface normal replaced by the tangent. Our main contribution is an analytic formula for the diffuse Kajiya‐Kay BRDF in terms of spherical harmonics; this derivation is more complicated than for the standard diffuse lobe. We show that the terms decay even more rapidly than for Lambertian reflectance, going as l–3, where l is the spherical harmonic order, and with only 6 terms (l = 0 and l = 2) capturing 99.8% of the energy. Existing code for irradiance environment maps can be trivially adapted for real‐time rendering with tangent irradiance maps. We also demonstrate an application to offline rendering of the diffuse component of fibers, using our formula as a control variate for Monte Carlo sampling.  相似文献   

20.
We propose a novel rendering method which supports interactive BRDF editing as well as relighting on a 3D scene. For interactive BRDF editing, we linearize an analytic BRDF model with basis BRDFs obtained from a principal component analysis. For each basis BRDF, the radiance transfer is precomputed and stored in vector form. In rendering time, illumination of a point is computed by multiplying the radiance transfer vectors of the basis BRDFs by the incoming radiance from gather samples and then linearly combining the results weighted by user‐controlled parameters. To improve the level of accuracy, a set of sub‐area samples associated with a gather sample refines the glossy reflection of the geometric details without increasing the precomputation time. We demonstrate this program with a number of examples to verify the real‐time performance of relighting and BRDF editing on 3D scenes with complex lighting and geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号