首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Progressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called Insights Feed for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.  相似文献   

3.
Visual computing has become highly attractive for boosting research endeavors in the materials science domain. Using visual computing, a multitude of different phenomena may now be studied, at various scales, dimensions, or using different modalities. This was simply impossible before. Visual computing techniques provide novel insights in order to understand complex material systems of interest, which is demonstrated by strongly rising number of new approaches, publishing new techniques for materials analysis and simulation. Outlining the proximity of materials science and visual computing, this state of the art report focuses on the intersection of both domains in order to guide research endeavors in this field. We provide a systematic survey on the close interrelations of both fields as well as how they profit from each other. Analyzing the existing body of literature, we review the domain of visual computing supported materials science, starting with the definition of materials science as well as material systems for which visual computing is frequently used. Major tasks for visual computing, visual analysis and visualization in materials sciences are identified, as well as simulation and testing techniques, which are providing the data for the respective analyses. We reviewed the input data characteristics and the direct and derived outputs, the visualization techniques and visual metaphors used, as well as the interactions and analysis workflows employed. All our findings are finally integrated in a cumulative matrix, giving insights about the different interrelations of both domains. We conclude our report with the identification of open high level and low level challenges for future research.  相似文献   

4.
Visual cryptography is an encryption technique that hides a secret image by distributing it between some shared images made up of seemingly random black‐and‐white pixels. Extended visual cryptography (EVC) goes further in that the shared images instead represent meaningful binary pictures. The original approach to EVC suffered from low contrast, so later papers considered how to improve the visual quality of the results by enhancing contrast of the shared images. This work further improves the appearance of the shared images by preserving edge structures within them using a framework of dithering followed by a detail recovery operation. We are also careful to suppress noise in smooth areas.  相似文献   

5.
In eye tracking research, finding eye movement patterns and similar strategies between participants’ eye movements is important to understand task solving strategies and obstacles. In this application paper, we present a graph comparison method using radial graphs that show Areas of Interest (AOIs) and their transitions. An analyst investigates a single graph based on dwell times, directed transitions, and temporal AOI sequences. Two graphs can be compared directly and temporal changes may be analyzed. A list and matrix approach facilitate the analyst to contrast more than two graphs guided by visually encoded graph similarities. We evaluated our approach in case studies with three eye tracking and visualization experts. They identified temporal transition patterns of eye movements across participants, groups of participants, and outliers.  相似文献   

6.
Outliers, the data instances that do not conform with normal patterns in a dataset, are widely studied in various domains, such as cybersecurity, social analysis, and public health. By detecting and analyzing outliers, users can either gain insights into abnormal patterns or purge the data of errors. However, different domains usually have different considerations with respect to outliers. Understanding the defining characteristics of outliers is essential for users to select and filter appropriate outliers based on their domain requirements. Unfortunately, most existing work focuses on the efficiency and accuracy of outlier detection, neglecting the importance of outlier interpretation. To address these issues, we propose Oui, a visual analytic system that helps users understand, interpret, and select the outliers detected by various algorithms. We also present a usage scenario on a real dataset and a qualitative user study to demonstrate the effectiveness and usefulness of our system.  相似文献   

7.
Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study.  相似文献   

8.
Interaction is critical to effective visualization, but can be difficult to author and debug due to dependencies among input events, program state, and visual output. Recent advances leverage reactive semantics to support declarative design and avoid the “spaghetti code” of imperative event handlers. While reactive programming improves many aspects of development, textual specifications still fail to convey the complex runtime dynamics. In response, we contribute a set of visual debugging techniques to reveal the runtime behavior of reactive visualizations. A timeline view records input events and dynamic variable updates, allowing designers to replay and inspect the propagation of values step‐by‐step. On‐demand annotations overlay the output visualization to expose relevant state and scale mappings in‐situ. Dynamic tables visualize how backing datasets change over time. To evaluate the effectiveness of these techniques, we study how first‐time Vega users debug interactions in faulty, unfamiliar specifications; with no prior knowledge, participants were able to accurately trace errors through the specification.  相似文献   

9.
We present an argument for using visual analytics to aid Grounded Theory methodologies in qualitative data analysis. Grounded theory methods involve the inductive analysis of data to generate novel insights and theoretical constructs. Making sense of unstructured text data is uniquely suited for visual analytics. Using natural language processing techniques such as parts‐of‐speech tagging, retrieving information content, and topic modeling, different parts of the data can be structured and semantically associated, and interactively explored, thereby providing conceptual depth to the guided discovery process. We review grounded theory methods and identify processes that can be enhanced through visual analytic techniques. Next, we develop an interface for qualitative text analysis, and evaluate our design with qualitative research practitioners who analyze texts with and without visual analytics support. The results of our study suggest how visual analytics can be incorporated into qualitative data analysis tools, and the analytic and interpretive benefits that can result.  相似文献   

10.
Hand‐drawn sketching on napkins or whiteboards is a common, accessible method for generating visual representations. This practice is shared by experts and non‐experts and is probably one of the faster and more expressive ways to draft a visual representation of data. In order to better understand the types of and variations in what people produce when sketching data, we conducted a qualitative study. We asked people with varying degrees of visualization expertise, from novices to experts, to manually sketch representations of a small, easily understandable dataset using pencils and paper and to report on what they learned or found interesting about the data. From this study, we extract a data sketching representation continuum from numeracy to abstraction; a data report spectrum from individual data items to speculative data hypothesis; and show the correspondence between the representation types and the data reports from our results set. From these observations we discuss the participants’ representations in relation to their data reports, indicating implications for design and potentially fruitful directions for research.  相似文献   

11.
Increasing the safety of vehicles is an important goal for vehicle manufacturers. These manufacturers often turn to simulations to understand how to improve a vehicle's design as real‐world safety tests are expensive and time consuming. Understanding the results of these simulations, however, is challenging due to the complexity of the data, which often includes both spatial and nonspatial data types. In this design study we collaborated with analysts who are trying to understand the vulnerability of military vehicles. From this design study we contribute a problem characterization, data abstraction, and task analysis for vehicle vulnerability analysis, as well as a validated and deployed tool called Shotviewer. Shotviewer links 3D spatial views with abstract 2D views to support a broad range of analysis needs. Furthermore, reflection on our design study process elucidates a strategy of view‐design parallelism for creating multiview visualizations, as well as four recommendations for conducting design studies in large organizations with sensitive data.  相似文献   

12.
Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of these intra‐tumor regions can improve patient diagnosis and enable a better targeted treatment. Ideally, tissue characterization could be performed non‐invasively, using medical imaging data, to derive per voxel a number of features, indicative of tissue properties. However, the high dimensionality and complexity of this imaging‐derived feature space is prohibiting for easy exploration and analysis ‐ especially when clinical researchers require to associate observations from the feature space to other reference data, e.g., features derived from histopathological data. Currently, the exploratory approach used in clinical research consists of juxtaposing these data, visually comparing them and mentally reconstructing their relationships. This is a time consuming and tedious process, from which it is difficult to obtain the required insight. We propose a visual tool for: (1) easy exploration and visual analysis of the feature space of imaging‐derived tissue characteristics and (2) knowledge discovery and hypothesis generation and confirmation, with respect to reference data used in clinical research. We employ, as central view, a 2D embedding of the imaging‐derived features. Multiple linked interactive views provide functionality for the exploration and analysis of the local structure of the feature space, enabling linking to patient anatomy and clinical reference data. We performed an initial evaluation with ten clinical researchers. All participants agreed that, unlike current practice, the proposed visual tool enables them to identify, explore and analyze heterogeneous intra‐tumor regions and particularly, to generate and confirm hypotheses, with respect to clinical reference data.  相似文献   

13.
Many factors can shape the flow of visual data‐driven stories, and thereby the way readers experience those stories. Through the analysis of 80 existing stories found on popular websites, we systematically investigate and identify seven characteristics of these stories, which we name “flow‐factors,” and we illustrate how they feed into the broader concept of “visual narrative flow.” These flow‐factors are navigation input, level of control, navigation progress, story layout, role of visualization, story progression, and navigation feedback. We also describe a series of studies we conducted, which shed initial light on how different visual narrative flows impact the reading experience. We report on two exploratory studies, in which we gathered reactions and preferences of readers for stepper‐ vs. scroller‐driven flows. We then report on a crowdsourced study with 240 participants, in which we explore the effect of the combination of different flow‐factors on readers’ engagement. Our results indicate that visuals and navigation feedback (e.g., static vs. animated transitions) have an impact on readers’ engagement, while level of control (e.g., discrete vs. continuous) may not.  相似文献   

14.
To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation.  相似文献   

15.
Little is known about how people structure sets of visualizations to support sequential viewing. We contribute findings from several studies examining visualization sequencing and reception. In our first study, people made decisions between various possible structures as they ordered a set of related visualizations (consisting of either bar charts or thematic maps) into what they considered the clearest sequence for showing the data. We find that most people structure visualization sequences hierarchically: they create high level groupings based on shared data properties like time period, measure, level of aggregation, and spatial region, then order the views within these groupings. We also observe a tendency for certain types of similarities between views, like a common spatial region or aggregation level, to be seen as more appropriate categories for organizing views in a sequence than others, like a common time period or measure. In a second study, we find that viewers’ perceptions of the quality and intention of different sequences are largely consistent with the perceptions of the users who created them. The understanding of sequence preferences and perceptions that emerges from our studies has implications for the development of visualization authoring tools and sequence recommendations for guided analysis.  相似文献   

16.
This paper addresses the increasing demand in industry for methods to analyze and visualize multimodal data involving a spectral modality. Two data modalities are used: high‐resolution X‐ray computed tomography (XCT) for structural characterization and low‐resolution X‐ray fluorescence (XRF) spectral data for elemental decomposition. We present InSpectr, an integrated tool for the interactive exploration and visual analysis of multimodal, multiscalar data. The tool has been designed around a set of tasks identified by domain experts in the fields of XCT and XRF. It supports registered single scalar and spectral datasets optionally coupled with element maps and reference spectra. InSpectr is instantiating various linked views for the integration of spatial and non‐spatial information to provide insight into an industrial component's structural and material composition: views with volume renderings of composite and individual 3D element maps visualize global material composition; transfer functions defined directly on the spectral data and overlaid pie‐chart glyphs show elemental composition in 2D slice‐views; a representative aggregated spectrum and spectra density histograms are introduced to provide a global overview in the spectral view. Spectral magic lenses, spectrum probing and elemental composition probing of points using a pie‐chart view and a periodic table view aid the local material composition analysis. Two datasets are investigated to outline the usefulness of the presented techniques: a 3D virtually created phantom with a brass metal alloy and a real‐world 2D water phantom with insertions of gold, barium, and gadolinium. Additionally a detailed user evaluation of the results is provided.  相似文献   

17.
We developed a visual analysis tool to support the verification, assessment, and presentation of alleged cases of plagiarism. The analysis of a suspicious document typically results in a compilation of categorized “finding spots”. The categorization reveals the way in which the suspicious text fragment was created from the source, e.g. by obfuscation, translation, or by shake and paste. We provide a three‐level approach for exploring the finding spots in context. The overview shows the relationship of the entire suspicious document to the set of source documents. A glyph‐based view reveals the structural and textual differences and similarities of a set of finding spots and their corresponding source text fragments. For further analysis and editing of the finding spot's assessment, the actual text fragments can be embedded side‐by‐side in the diffline view. The different views are tied together by versatile navigation and selection operations. Our expert reviewers confirm that our tool provides a significant improvement over existing static visualizations for assessing plagiarism cases.  相似文献   

18.
Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision‐making and process‐quality measurements.  相似文献   

19.
Node‐link infographics are visually very rich and can communicate messages effectively, but can be very difficult to create, often involving a painstaking and artisanal process. In this paper we present an investigation of node‐link visualizations for communication and how to better support their creation. We begin by breaking down these images into their basic elements and analyzing how they are created. We then present a set of techniques aimed at improving the creation workflow by bringing more flexibility and power to users, letting them manipulate all aspects of a node‐link diagram (layout, visual attributes, etc.) while taking into account the context in which it will appear. These techniques were implemented in a proof‐of‐concept prototype called GraphCoiffure, which was designed as an intermediary step between graph drawing/editing software and image authoring applications. We describe how GraphCoiffure improves the workflow and illustrate its benefits through practical examples.  相似文献   

20.
Traditional multivariate clustering approaches are common in many geovisualization applications. These algorithms are used to define geodemographic profiles, ecosystems and various other land use patterns that are based on multivariate measures. Cluster labels are then projected onto a choropleth map to enable analysts to explore spatial dependencies and heterogeneity within the multivariate attributes. However, local variations in the data and choices of clustering parameters can greatly impact the resultant visualization. In this work, we develop a visual analytics framework for exploring and comparing the impact of geographical variations for multivariate clustering. Our framework employs a variety of graphical configurations and summary statistics to explore the spatial extents of clustering. It also allows users to discover patterns that can be concealed by traditional global clustering via several interactive visualization techniques including a novel drag & drop clustering difference view. We demonstrate the applicability of our framework over a demographics dataset containing quick facts about counties in the continental United States and demonstrate the need for analytical tools that can enable users to explore and compare clustering results over varying geographical features and scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号