首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well‐articulated after the adaptation. We propose an optimization algorithm which learns the subject‐specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically‐based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.  相似文献   

2.
Smoke animations are hard to art‐direct because simple changes in parameters such as simulation resolution often lead to unpredictable changes in the final result. Previous work has addressed this problem with a guiding approach which couples low‐resolution simulations – that exhibit the desired flow and behaviour – to the final, high‐resolution simulation. This is done in such a way that the desired low frequency features are to some extent preserved in the high‐resolution simulation. However, the steady (i.e. constant) guiding used often leads to a lack of sufficiently high detail, and employing time‐dependent guiding is expensive because the matrix of the resulting set of equations needs to be recomputed at every iteration. We propose an improved mathematical model for Eulerian‐based simulations which is better suited for dynamic, time‐dependent guiding of smoke animations through a novel variational coupling of the low‐ and high‐resolution simulations. Our model results in a matrix that does not require re‐computation when the guiding changes over time, and hence we can employ time‐dependent guiding more efficiently both in terms of storage and computational requirements. We demonstrate that time‐dependent guiding allows for more high frequency detail to develop without losing correspondence to the low resolution simulation. Furthermore, we explore various artistic effects made possible by time‐dependent guiding.  相似文献   

3.
Simulation of light transport through lens systems plays an important role in graphics. While basic imaging properties can be conveniently derived from linear models (like ABCD matrices), these approximations fail to describe nonlinear effects and aberrations that arise in real optics. Such effects can be computed by proper ray tracing, for which, however, finding suitable sampling and filtering strategies is often not a trivial task. Inspired by aberration theory, which describes the deviation from the linear ray transfer in terms of wavefront distortions, we propose a ray‐space formulation for nonlinear effects. In particular, we approximate the analytical solution to the ray tracing problem by means of a Taylor expansion in the ray parameters. This representation enables a construction‐kit approach to complex optical systems in the spirit of matrix optics. It is also very simple to evaluate, which allows for efficient execution on CPU and GPU alike, including the computation of mixed derivatives of any order. We evaluate fidelity and performance of our polynomial model, and show applications in high‐quality offline rendering and at interactive frame rates.  相似文献   

4.
Environment‐mapped rendering of Lambertian isotropic surfaces is common, and a popular technique is to use a quadratic spherical harmonic expansion. This compact irradiance map representation is widely adopted in interactive applications like video games. However, many materials are anisotropic, and shading is determined by the local tangent direction, rather than the surface normal. Even for visualization and illustration, it is increasingly common to define a tangent vector field, and use anisotropic shading. In this paper, we extend spherical harmonic irradiance maps to anisotropic surfaces, replacing Lambertian reflectance with the diffuse term of the popular Kajiya‐Kay model. We show that there is a direct analogy, with the surface normal replaced by the tangent. Our main contribution is an analytic formula for the diffuse Kajiya‐Kay BRDF in terms of spherical harmonics; this derivation is more complicated than for the standard diffuse lobe. We show that the terms decay even more rapidly than for Lambertian reflectance, going as l–3, where l is the spherical harmonic order, and with only 6 terms (l = 0 and l = 2) capturing 99.8% of the energy. Existing code for irradiance environment maps can be trivially adapted for real‐time rendering with tangent irradiance maps. We also demonstrate an application to offline rendering of the diffuse component of fibers, using our formula as a control variate for Monte Carlo sampling.  相似文献   

5.
In this paper, we present a method to model hyperelasticity that is well suited for representing the nonlinearity of real‐world objects, as well as for estimating it from deformation examples. Previous approaches suffer several limitations, such as lack of integrability of elastic forces, failure to enforce energy convexity, lack of robustness of parameter estimation, or difficulty to model cross‐modal effects. Our method avoids these problems by relying on a general energy‐based definition of elastic properties. The accuracy of the resulting elastic model is maximized by defining an additive model of separable energy terms, which allow progressive parameter estimation. In addition, our method supports efficient modeling of extreme nonlinearities thanks to energy‐limiting constraints. We combine our energy‐based model with an optimization method to estimate model parameters from force‐deformation examples, and we show successful modeling of diverse deformable objects, including cloth, human finger skin, and internal human anatomy in a medical imaging application.  相似文献   

6.
The human shoulder complex is perhaps the most complicated joint in the human body being comprised of a set of three bones, muscles, tendons, and ligaments. Despite this anatomical complexity, computer graphics models for motion capture most often represent this joint as a simple ball and socket. In this paper, we present a method to determine a shoulder skeletal model that, when combined with standard skinning algorithms, generates a more visually pleasing animation that is a closer approximation to the actual skin deformations of the human body. We use a data‐driven approach and collect ground truth skin deformation data with an optical motion capture system with a large number of markers (200 markers on the shoulder complex alone). We cluster these markers during movement sequences and discover that adding one extra joint around the shoulder improves the resulting animation qualitatively and quantitatively yielding a marker set of approximately 70 markers for the complete skeleton. We demonstrate the effectiveness of our skeletal model by comparing it with ground truth data as well as with recorded video. We show its practicality by integrating it with the conventional rendering/animation pipeline.  相似文献   

7.
Visualizing Underwater Ocean Optics   总被引:1,自引:0,他引:1  
Simulating the in‐water ocean light field is a daunting task. Ocean waters are one of the richest participating media, where light interacts not only with water molecules, but with suspended particles and organic matter as well. The concentration of each constituent greatly affects these interactions, resulting in very different hues. Inelastic scattering events such as fluorescence or Raman scattering imply energy transfers that are usually neglected in the simulations. Our contributions in this paper are a bio‐optical model of ocean waters suitable for computer graphics simulations, along with an improved method to obtain an accurate solution of the in‐water light field based on radiative transfer theory. The method provides a link between the inherent optical properties that define the medium and its apparent optical properties, which describe how it looks. The bio‐optical model of the ocean uses published data from oceanography studies. For inelastic scattering we compute all frequency changes at higher and lower energy values, based on the spectral quantum efficiency function of the medium. The results shown prove the usability of the system as a predictive rendering algorithm. Areas of application for this research span from underwater imagery to remote sensing; the resolution method is general enough to be usable in any type of participating medium simulation.  相似文献   

8.
A common weathering effect is the appearance of cracks due to material fractures. Previous exemplar‐based aging and weathering methods have either reused images or sought to replicate observed patterns exactly. We introduce a new approach to exemplar‐based modeling that creates weathered patterns on synthetic objects by matching the statistics of fracture patterns in a photograph. We present a user study to determine which statistics are correlated to visual similarity and how they are perceived by the user. We then describe a revised physically‐based fracture model capable of producing a wide range of crack patterns at interactive rates. We demonstrate how a Bayesian optimization method can determine the parameters of this model so it can produce a pattern with the same key statistics as an exemplar. Finally, we present results using our approach and various exemplars to produce a variety of fracture effects in synthetic renderings of complex environments. The speed of the fracture simulation allows interactive previews of the fractured results and its application on large scale environments.  相似文献   

9.
This study aims to develop a controller for use in the online simulation of two interacting characters. This controller is capable of generalizing two sets of interaction motions of the two characters based on the relationships between the characters. The controller can exhibit similar motions to a captured human motion while reacting in a natural way to the opponent character in real time. To achieve this, we propose a new type of physical model called a coupled inverted pendulum on carts that comprises two inverted pendulum on a cart models, one for each individual, which are coupled by a relationship model. The proposed framework is divided into two steps: motion analysis and motion synthesis. Motion analysis is an offline preprocessing step, which optimizes the control parameters to move the proposed model along a motion capture trajectory of two interacting humans. The optimization procedure generates a coupled pendulum trajectory which represents the relationship between two characters for each frame, and is used as a reference in the synthesis step. In the motion synthesis step, a new coupled pendulum trajectory is planned reflecting the effects of the physical interaction, and the captured reference motions are edited based on the planned trajectory produced by the coupled pendulum trajectory generator. To validate the proposed framework, we used a motion capture data set showing two people performing kickboxing. The proposed controller is able to generalize the behaviors of two humans to different situations such as different speeds and turning speeds in a realistic way in real time.  相似文献   

10.
We present a novel physically‐based method to visualize stress tensor fields. By incorporating photoelasticity into traditional raycasting and extending it with reflection and refraction, taking into account polarization, we obtain the virtual counterpart to traditional experimental polariscopes. This allows us to provide photoelastic analysis of stress tensor fields in arbitrary domains. In our model, the optical material properties, such as stress‐optic coefficient and refractive index, can either be chosen in compliance with the subject under investigation, or, in case of stress problems that do not model optical properties or that are not transparent, be chosen according to known or even new transparent materials. This enables direct application of established polariscope methodology together with respective interpretation. Using a GPU‐based implementation, we compare our technique to experimental data, and demonstrate its utility with several simulated datasets.  相似文献   

11.
Eleven tone‐mapping operators intended for video processing are analyzed and evaluated with camera‐captured and computer‐generated high‐dynamic‐range content. After optimizing the parameters of the operators in a formal experiment, we inspect and rate the artifacts (flickering, ghosting, temporal color consistency) and color rendition problems (brightness, contrast and color saturation) they produce. This allows us to identify major problems and challenges that video tone‐mapping needs to address. Then, we compare the tone‐mapping results in a pair‐wise comparison experiment to identify the operators that, on average, can be expected to perform better than the others and to assess the magnitude of differences between the best performing operators.  相似文献   

12.
Compared with its competitors such as the bounding volume hierarchy, a drawback of the kd‐tree structure is that a large number of triangles are repeatedly duplicated during its construction, which often leads to inefficient, large and tall binary trees with high triangle redundancy. In this paper, we propose a space‐efficient kd‐tree representation where, unlike commonly used methods, an inner node is allowed to optionally store a reference to a triangle, so highly redundant triangles in a kd‐tree can be culled from the leaf nodes and moved to the inner nodes. To avoid the construction of ineffective kd‐trees entailing computational inefficiencies due to early, possibly unnecessary, ray‐triangle intersection calculations that now have to be performed in the inner nodes during the kd‐tree traversal, we present heuristic measures for determining when and how to choose triangles for inner nodes during kd‐tree construction. Based on these metrics, we describe how the new form of kd‐tree is constructed and stored compactly using a carefully designed data layout. Our experiments with several example scenes showed that our kd‐tree representation technique significantly reduced the memory requirements for storing the kd‐tree structure, while effectively suppressing the unavoidable frame‐rate degradation observed during ray tracing.  相似文献   

13.
Molecular dynamics simulations are a principal tool for studying molecular systems. Such simulations are used to investigate molecular structure, dynamics, and thermodynamical properties, as well as a replacement for, or complement to, costly and dangerous experiments. With the increasing availability of computational power the resulting data sets are becoming increasingly larger, and benchmarks indicate that the interactive visualization on desktop computers poses a challenge when rendering substantially more than millions of glyphs. Trading visual quality for rendering performance is a common approach when interactivity has to be guaranteed. In this paper we address both problems and present a method for high‐quality visualization of massive molecular dynamics data sets. We employ several optimization strategies on different levels of granularity, such as data quantization, data caching in video memory, and a two‐level occlusion culling strategy: coarse culling via hardware occlusion queries and a vertex‐level culling using maximum depth mipmaps. To ensure optimal image quality we employ GPU raycasting and deferred shading with smooth normal vector generation. We demonstrate that our method allows us to interactively render data sets containing tens of millions of high‐quality glyphs.  相似文献   

14.
Modeling of realistic garments is essential for online shopping and many other applications including virtual characters. Most of existing methods either require a multi‐camera capture setup or a restricted mannequin pose. We address the garment modeling problem according to a single input image. We design an all‐pose garment outline interpretation, and a shading‐based detail modeling algorithm. Our method first estimates the mannequin pose and body shape from the input image. It further interprets the garment outline with an oriented facet decided according to the mannequin pose to generate the initial 3D garment model. Shape details such as folds and wrinkles are modeled by shape‐from‐shading techniques, to improve the realism of the garment model. Our method achieves similar result quality as prior methods from just a single image, significantly improving the flexibility of garment modeling.  相似文献   

15.
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.  相似文献   

16.
Creating realistic human movement is a time consuming and labour intensive task. The major difficulty is that the user has to edit individual joints while maintaining an overall realistic and collision free posture. Previous research suggests the use of data‐driven inverse kinematics, such that one can focus on the control of a few joints, while the system automatically composes a natural posture. However, as a common problem of kinematics synthesis, penetration of body parts is difficult to avoid in complex movements. In this paper, we propose a new data‐driven inverse kinematics framework that conserves the topology of the synthesizing postures. Our system monitors and regulates the topology changes using the Gauss Linking Integral (GUI), such that penetration can be efficiently prevented. As a result, complex motions with tight body movements, as well as those involving interaction with external objects, can be simulated with minimal manual intervention. Experimental results show that using our system, the user can create high quality human motion in real‐time by controlling a few joints using a mouse or a multi‐touch screen. The movement generated is both realistic and penetration free. Our system is best applied for interactive motion design in computer animations and games.  相似文献   

17.
Controlling a crowd using multi‐touch devices appeals to the computer games and animation industries, as such devices provide a high‐dimensional control signal that can effectively define the crowd formation and movement. However, existing works relying on pre‐defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data‐driven gesture‐based crowd control system, in which the control scheme is learned from example gestures provided by different users. In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run‐time gesture, our system extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the run‐time control. Our system is accurate and efficient, making it suitable for real‐time applications such as real‐time strategy games and interactive animation controls.  相似文献   

18.
We present an interactive design system for designing free‐formed bamboo‐copters, where novices can easily design free‐formed, even asymmetric bamboo‐copters that successfully fly. The designed bamboo‐copters can be fabricated using digital fabrication equipment, such as a laser cutter. Our system provides two useful functions for facilitating this design activity. First, it visualizes a simulated flight trajectory of the current bamboo‐copter design, which is updated in real time during the user's editing. Second, it provides an optimization function that automatically tweaks the current bamboo‐copter design such that the spin quality—how stably it spins—and the flight quality—how high and long it flies—are enhanced. To enable these functions, we present non‐trivial extensions over existing techniques for designing free‐formed model airplanes [ UKSI14 ], including a wing discretization method tailored to free‐formed bamboo‐copters and an optimization scheme for achieving stable bamboo‐copters considering both spin and flight qualities.  相似文献   

19.
Digital landscape realism often comes from the multitude of details that are hard to model such as fallen leaves, rock piles or entangled fallen branches. In this article, we present a method for augmenting natural scenes with a huge amount of details such as grass tufts, stones, leaves or twigs. Our approach takes advantage of the observation that those details can be approximated by replications of a few similar objects and therefore relies on mass‐instancing. We propose an original structure, the Ghost Tile, that stores a huge number of overlapping candidate objects in a tile, along with a pre‐computed collision graph. Details are created by traversing the scene with the Ghost Tile and generating instances according to user‐defined density fields that allow to sculpt layers and piles of entangled objects while providing control over their density and distribution.  相似文献   

20.
The standard C/C++ implementation of a spatial partitioning data structure, such as octree and quadtree, is often inefficient in terms of storage requirements particularly when the memory overhead for maintaining parent‐to‐child pointers is significant with respect to the amount of actual data in each tree node. In this work, we present a novel data structure that implements uniform spatial partitioning without storing explicit parent‐to‐child pointer links. Our linkless tree encodes the storage locations of subdivided nodes using perfect hashing while retaining important properties of uniform spatial partitioning trees, such as coarse‐to‐fine hierarchical representation, efficient storage usage, and efficient random accessibility. We demonstrate the performance of our linkless trees using image compression and path planning examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号