首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a novel method for non‐rigid shape matching, designed to address the symmetric ambiguity problem present when matching shapes with intrinsic symmetries. Unlike the majority of existing methods which try to overcome this ambiguity by sampling a set of landmark correspondences, we address this problem directly by performing shape matching in an appropriate quotient space, where the symmetry has been identified and factored out. This allows us to both simplify the shape matching problem by matching between subspaces, and to return multiple solutions with equally good dense correspondences. Remarkably, both symmetry detection and shape matching are done without establishing any landmark correspondences between either points or parts of the shapes. This allows us to avoid an expensive combinatorial search present in most intrinsic symmetry detection and shape matching methods. We compare our technique with state‐of‐the‐art methods and show that superior performance can be achieved both when the symmetry on each shape is known and when it needs to be estimated.  相似文献   

2.
Although considerable attention in recent years has been given to the problem of symmetry detection in general shapes, few methods have been developed that aim to detect and quantify the intrinsic symmetry of a shape rather than its extrinsic, or pose‐dependent symmetry. In this paper, we present a novel approach for efficiently computing symmetries of a shape which are invariant up to isometry preserving transformations. We show that the intrinsic symmetries of a shape are transformed into the Euclidean symmetries in the signature space defined by the eigenfunctions of the Laplace‐Beltrami operator. Based on this observation, we devise an algorithm which detects and computes the isometric mappings from the shape onto itself. We show that our approach is both computationally efficient and robust with respect to small non‐isometric deformations, even if they include topological changes.  相似文献   

3.
We consider the problem of approximating an arbitrary generic surface with a given set of simple surface primitives. In contrast to previous approaches based on variational surface approximation, which are primarily concerned with finding an optimal partitioning of the input geometry, we propose to integrate a model selection step into the algorithm in order to also optimize the type of primitive for each proxy. Our method is a joint global optimization of both the partitioning of the input surface as well as the types and number of used shape proxies. Thus, our method performs an automatic trade‐off between representation complexity and approximation error without relying on a user supplied predetermined number of shape proxies. This way concise surface representations are found that better exploit the full approximative power of the employed primitive types.  相似文献   

4.
We address the problem of generating quality surface triangle meshes from 3D point clouds sampled on piecewise smooth surfaces. Using a feature detection process based on the covariance matrices of Voronoi cells, we first extract from the point cloud a set of sharp features. Our algorithm also runs on the input point cloud a reconstruction process, such as Poisson reconstruction, providing an implicit surface. A feature preserving variant of a Delaunay refinement process is then used to generate a mesh approximating the implicit surface and containing a faithful representation of the extracted sharp edges. Such a mesh provides an enhanced trade‐off between accuracy and mesh complexity. The whole process is robust to noise and made versatile through a small set of parameters which govern the mesh sizing, approximation error and shape of the elements. We demonstrate the effectiveness of our method on a variety of models including laser scanned datasets ranging from indoor to outdoor scenes.  相似文献   

5.
Efficient RANSAC for Point-Cloud Shape Detection   总被引:7,自引:0,他引:7  
In this paper we present an automatic algorithm to detect basic shapes in unorganized point clouds. The algorithm decomposes the point cloud into a concise, hybrid structure of inherent shapes and a set of remaining points. Each detected shape serves as a proxy for a set of corresponding points. Our method is based on random sampling and detects planes, spheres, cylinders, cones and tori. For models with surfaces composed of these basic shapes only, for example, CAD models, we automatically obtain a representation solely consisting of shape proxies. We demonstrate that the algorithm is robust even in the presence of many outliers and a high degree of noise. The proposed method scales well with respect to the size of the input point cloud and the number and size of the shapes within the data. Even point sets with several millions of samples are robustly decomposed within less than a minute. Moreover, the algorithm is conceptually simple and easy to implement. Application areas include measurement of physical parameters, scan registration, surface compression, hybrid rendering, shape classification, meshing, simplification, approximation and reverse engineering.  相似文献   

6.
We present a sparse optimization framework for extracting sparse shape priors from a collection of 3D models. Shape priors are defined as point‐set neighborhoods sampled from shape surfaces which convey important information encompassing normals and local shape characterization. A 3D shape model can be considered to be formed with a set of 3D local shape priors, while most of them are likely to have similar geometry. Our key observation is that the local priors extracted from a family of 3D shapes lie in a very low‐dimensional manifold. Consequently, a compact and informative subset of priors can be learned to efficiently encode all shapes of the same family. A comprehensive library of local shape priors is first built with the given collection of 3D models of the same family. We then formulate a global, sparse optimization problem which enforces selecting representative priors while minimizing the reconstruction error. To solve the optimization problem, we design an efficient solver based on the Augmented Lagrangian Multipliers method (ALM). Extensive experiments exhibit the power of our data‐driven sparse priors in elegantly solving several high‐level shape analysis applications and geometry processing tasks, such as shape retrieval, style analysis and symmetry detection.  相似文献   

7.
Symmetry is a common characteristic in natural and man‐made objects. Its ubiquitous nature can be exploited to facilitate the analysis and processing of computational representations of real objects. In particular, in computer graphics, the detection of symmetries in 3D geometry has enabled a number of applications in modeling and reconstruction. However, the problem of symmetry detection in incomplete geometry remains a challenging task. In this paper, we propose a vote‐based approach to detect symmetry in 3D shapes, with special interest in models with large missing parts. Our algorithm generates a set of candidate symmetries by matching local maxima of a surface function based on the heat diffusion in local domains, which guarantee robustness to missing data. In order to deal with local perturbations, we propose a multi‐scale surface function that is useful to select a set of distinctive points over which the approximate symmetries are defined. In addition, we introduce a vote‐based scheme that is aware of the partiality, and therefore reduces the number of false positive votes for the candidate symmetries. We show the effectiveness of our method in a varied set of 3D shapes and different levels of partiality. Furthermore, we show the applicability of our algorithm in the repair and completion of challenging reassembled objects in the context of cultural heritage.  相似文献   

8.
We introduce a generative model of part‐segmented 3D objects: the shape variational auto‐encoder (ShapeVAE). The ShapeVAE describes a joint distribution over the existence of object parts, the locations of a dense set of surface points, and over surface normals associated with these points. Our model makes use of a deep encoder‐decoder architecture that leverages the part‐decomposability of 3D objects to embed high‐dimensional shape representations and sample novel instances. Given an input collection of part‐segmented objects with dense point correspondences the ShapeVAE is capable of synthesizing novel, realistic shapes, and by performing conditional inference enables imputation of missing parts or surface normals. In addition, by generating both points and surface normals, our model allows for the use of powerful surface‐reconstruction methods for mesh synthesis. We provide a quantitative evaluation of the ShapeVAE on shape‐completion and test‐set log‐likelihood tasks and demonstrate that the model performs favourably against strong baselines. We demonstrate qualitatively that the ShapeVAE produces plausible shape samples, and that it captures a semantically meaningful shape‐embedding. In addition we show that the ShapeVAE facilitates mesh reconstruction by sampling consistent surface normals.  相似文献   

9.
In this paper, we present the first algorithm for progressive sampling of 3D surfaces with blue noise characteristics that runs entirely on the GPU. The performance of our algorithm is comparable to state‐of‐the‐art GPU Poisson‐disk sampling methods, while additionally producing ordered sequences of samples where every prefix exhibits good blue noise properties. The basic idea is, to reduce the 3D sampling domain to a set of 2.5D images which we sample in parallel utilizing the rasterization hardware of current GPUs. This allows for simple visibility‐aware sampling that only captures the surface as seen from outside the sampled object, which is especially useful for point‐based level‐of‐detail rendering methods. However, our method can be easily extended for sampling the entire surface without changing the basic algorithm. We provide a statistical analysis of our algorithm and show that it produces good blue noise characteristics for every prefix of the resulting sample sequence and analyze the performance of our method compared to related state‐of‐the‐art sampling methods.  相似文献   

10.
We present a novel method to compute bijective PolyCube‐maps with low isometric distortion. Given a surface and its pre‐axis‐aligned shape that is not an exact PolyCube shape, the algorithm contains two steps: (i) construct a PolyCube shape to approximate the pre‐axis‐aligned shape; and (ii) generate a bijective, low isometric distortion mapping between the constructed PolyCube shape and the input surface. The PolyCube construction is formulated as a constrained optimization problem, where the objective is the number of corners in the constructed PolyCube, and the constraint is to bound the approximation error between the constructed PolyCube and the input pre‐axis‐aligned shape while ensuring topological validity. A novel erasing‐and‐filling solver is proposed to solve this challenging problem. Centeral to the algorithm for computing bijective PolyCube‐maps is a quad mesh optimization process that projects the constructed PolyCube onto the input surface with high‐quality quads. We demonstrate the efficacy of our algorithm on a data set containing 300 closed meshes. Compared to state‐of‐the‐art methods, our method achieves higher practical robustness and lower mapping distortion.  相似文献   

11.
We propose a noise‐adaptive shape reconstruction method specialized to smooth, closed shapes. Our algorithm takes as input a defect‐laden point set with variable noise and outliers, and comprises three main steps. First, we compute a novel noise‐adaptive distance function to the inferred shape, which relies on the assumption that the inferred shape is a smooth submanifold of known dimension. Second, we estimate the sign and confidence of the function at a set of seed points, through minimizing a quadratic energy expressed on the edges of a uniform random graph. Third, we compute a signed implicit function through a random walker approach with soft constraints chosen as the most confident seed points computed in previous step.  相似文献   

12.
We address the scale problem inherent to isometric shape correspondence in a combinatorial matching framework. We consider a particular setting of the general correspondence problem where one of the two shapes to be matched is an isometric (or nearly isometric) part of the other up to an arbitrary scale. We resolve the scale ambiguity by finding a coarse matching between shape extremities based on a novel scale‐invariant isometric distortion measure. The proposed algorithm also supports (partial) dense matching, that alleviates the symmetric flip problem due to initial coarse sampling. We test the performance of our matching algorithm on several shape datasets in comparison to state of the art. Our method proves useful, not only for partial matching, but also for complete matching of semantically similar hybrid shape pairs whose maximum geodesic distances may not be compatible, a case that would fail most of the conventional isometric shape matchers.  相似文献   

13.
We present a skeleton-based algorithm for intrinsic symmetry detection on imperfect 3D point cloud data. The data imperfections such as noise and incompleteness make it difficult to reliably compute geodesic distances, which play essential roles in existing intrinsic symmetry detection algorithms. In this paper, we leverage recent advances in curve skeleton extraction from point clouds for symmetry detection. Our method exploits the properties of curve skeletons, such as homotopy to the input shape, approximate isometry-invariance, and skeleton-to-surface mapping, for the detection task. Starting from a curve skeleton extracted from an input point cloud, we first compute symmetry electors, each of which is composed of a set of skeleton node pairs pruned with a cascade of symmetry filters. The electors are used to vote for symmetric node pairs indicating the symmetry map on the skeleton. A symmetry correspondence matrix (SCM) is constructed for the input point cloud through transferring the symmetry map from skeleton to point cloud. The final symmetry regions on the point cloud are detected via spectral analysis over the SCM. Experiments on raw point clouds, captured by a 3D scanner or the Microsoft Kinect, demonstrate the robustness of our algorithm. We also apply our method to repair incomplete scans based on the detected intrinsic symmetries.  相似文献   

14.
Conformal parameterizations over the sphere provide high‐quality maps between genus zero surfaces, and are essential for applications such as data transfer and comparative shape analysis. However, such maps are not unique: to define correspondence between two surfaces, one must find the Möbius transformation that best aligns two parameterizations—akin to picking a translation and rotation in rigid registration problems. We describe a simple procedure that canonically centers and rotationally aligns two spherical maps. Centering is implemented via elementary operations on triangle meshes in ?3, and minimizes area distortion. Alignment is achieved using the FFT over the group of rotations. We examine this procedure in the context of spherical conformal parameterization, orbifold maps, non‐rigid symmetry detection, and dense point‐to‐point surface correspondence.  相似文献   

15.
16.
We present the first 3D algorithm capable of answering the question: what would a Mandelbrot‐like set in the shape of a bunny look like? More concretely, can we find an iterated quaternion rational map whose potential field contains an isocontour with a desired shape? We show that it is possible to answer this question by casting it as a shape optimization that discovers novel, highly complex shapes. The problem can be written as an energy minimization, the optimization can be made practical by using an efficient method for gradient evaluation, and convergence can be accelerated by using a variety of multi‐resolution strategies. The resulting shapes are not invariant under common operations such as translation, and instead undergo intricate, non‐linear transformations.  相似文献   

17.
Dart‐throwing can generate ideal Poisson‐disk distributions with excellent blue noise properties, but is very computationally expensive if a maximal point set is desired. In this paper, we observe that the Poisson‐disk sampling problem can be posed in terms of importance sampling by representing the available space to be sampled as a probability density function (pdf). This allows us to develop an efficient algorithm for the generation of maximal Poisson‐disk distributions with quality similar to naïve dart‐throwing but without rejection of samples. In our algorithm, we first position samples in one dimension based on its marginal cumulative distribution function (cdf). We then throw samples in the other dimension only in the regions which are available for sampling. After each 2D sample is placed, we update the cdf and data structures to keep track of the available regions. In addition to uniform sampling, our method is able to perform variable‐density sampling with small modifications. Finally, we also propose a new min‐conflict metric for variable‐density sampling which results in better adaptation of samples to the underlying importance field.  相似文献   

18.
Lagrangian coherent structures (LCSs) have become a widespread and powerful method to describe dynamic motion patterns in time‐dependent flow fields. The standard way to extract LCS is to compute height ridges in the finite‐time Lyapunov exponent field. In this work, we present an alternative method to approximate Lagrangian features for 2D unsteady flow fields that achieve subgrid accuracy without additional particle sampling. We obtain this by a geometric reconstruction of the flow map using additional material constraints for the available samples. In comparison to the standard method, this allows for a more accurate global approximation of LCS on sparse grids and for long integration intervals. The proposed algorithm works directly on a set of given particle trajectories and without additional flow map derivatives. We demonstrate its application for a set of computational fluid dynamic examples, as well as trajectories acquired by Lagrangian methods, and discuss its benefits and limitations.  相似文献   

19.
We investigate the use of biased sampling according to the density of the data set to speed up the operation of general data mining tasks, such as clustering and outlier detection in large multidimensional data sets. In density-biased sampling, the probability that a given point will be included in the sample depends on the local density of the data set. We propose a general technique for density-biased sampling that can factor in user requirements to sample for properties of interest and can be tuned for specific data mining tasks. This allows great flexibility and improved accuracy of the results over simple random sampling. We describe our approach in detail, we analytically evaluate it, and show how it can be optimized for approximate clustering and outlier detection. Finally, we present a thorough experimental evaluation of the proposed method, applying density-biased sampling on real and synthetic data sets, and employing clustering and outlier detection algorithms, thus highlighting the utility of our approach.  相似文献   

20.
In this paper, we study a registration problem that is motivated by a practical biology problem – fitting protein structures to low‐re solution density maps. We consider registration between two sets of lines features (e.g., helices in the proteins) that have undergone not a single, but multiple isometric transformations (e.g., hinge‐motions). The problem is further complicated by the presence of symmetry in each set. We formulate the problem as a clique‐finding problem in a product graph, and propose a heuristic solution that includes a fast clique‐finding algorithm unique to the structure of this graph. When tested on a suite of real protein structures, the algorithm achieved high accuracy even for very large inputs containing hundreds of helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号