首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an efficient technique for synthesizing motions by stitching, or splicing, an upper‐body motion retrieved from a motion space on top of an existing lower‐body locomotion of another motion. Compared to the standard motion splicing problem, motion space splicing imposes new challenges as both the upper and lower body motions might not be known in advance. Our technique is the first motion (space) splicing technique that propagates temporal and spatial properties of the lower‐body locomotion to the newly generated upper‐body motion and vice versa. Whereas existing techniques only adapt the upper‐body motion to fit the lower‐body motion, our technique also adapts the lower‐body locomotion based on the upper body task for a more coherent full‐body motion. In this paper, we will show that our decoupled approach is able to generate high‐fidelity full‐body motion for interactive applications such as games.  相似文献   

2.
We present metalights, a novel Virtual Point Light (VPL) encapsulating structure which enhances classic interleaved shading by improving VPL sampling, based on few initial screen space samples to estimate VPL contribution to current view. Our method leads to important noise variance reduction in the final picture by only adding a small fraction of computation. The implementation is straight‐forward and well adapted to both CPU and GPU‐based engines. We also present different image‐space assignment schemes for the VPL subsets to break the regularity of the noise pattern or to adapt it to simple antialiasing.  相似文献   

3.
The most common solutions to the light transport problem rely on either Monte Carlo (MC) integration or density estimation methods, such as uni‐ & bi‐directional path tracing or photon mapping. Recent gradient‐domain extensions of MC approaches show great promise; here, gradients of the final image are estimated numerically (instead of the image intensities themselves) with coherent paths generated from a deterministic shift mapping. We extend gradient‐domain approaches to light transport simulation based on density estimation. As with previous gradient‐domain methods, we detail important considerations that arise when moving from a primal‐ to gradient‐domain estimator. We provide an efficient and straightforward solution to these problems. Our solution supports stochastic progressive density estimation, so it is robust to complex transport effects. We show that gradient‐domain photon density estimation converges faster than its primal‐domain counterpart, as well as being generally more robust than gradient‐domain uni‐ & bi‐directional path tracing for scenes dominated by complex transport.  相似文献   

4.
The ability to interactively render dynamic scenes with global illumination is one of the main challenges in computer graphics. The improvement in performance of interactive ray tracing brought about by significant advances in hardware and careful exploitation of coherence has rendered the potential of interactive global illumination a reality. However, the simulation of complex light transport phenomena, such as diffuse interreflections, is still quite costly to compute in real time. In this paper we present a caching scheme, termed Instant Caching, based on a combination of irradiance caching and instant radiosity. By reutilising calculations from neighbouring computations this results in a speedup over previous instant radiosity‐based approaches. Additionally, temporal coherence is exploited by identifying which computations have been invalidated due to geometric transformations and updating only those paths. The exploitation of spatial and temporal coherence allows us to achieve superior frame rates for interactive global illumination within dynamic scenes, without any precomputation or quality loss when compared to previous methods; handling of lighting and material changes are also demonstrated.  相似文献   

5.
Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including indirect lighting and arbitrary shading, is a long‐standing challenge. Prior work has shown that complex lighting can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation sequences becomes the problem of efficiently shading many surface samples from many lights across several frames. This paper presents a tensor formulation of the animated many‐light problem, where each element of the tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects, complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require fast previews of complex animation.  相似文献   

6.
Visual formats have advanced beyond single‐view images and videos: 3D movies are commonplace, researchers have developed multi‐view navigation systems, and VR is helping to push light field cameras to mass market. However, editing tools for these media are still nascent, and even simple filtering operations like color correction or stylization are problematic: naively applying image filters per frame or per view rarely produces satisfying results due to time and space inconsistencies. Our method preserves and stabilizes filter effects while being agnostic to the inner working of the filter. It captures filter effects in the gradient domain, then uses input frame gradients as a reference to impose temporal and spatial consistency. Our least‐squares formulation adds minimal overhead compared to naive data processing. Further, when filter cost is high, we introduce a filter transfer strategy that reduces the number of per‐frame filtering computations by an order of magnitude, with only a small reduction in visual quality. We demonstrate our algorithm on several camera array formats including stereo videos, light fields, and wide baselines.  相似文献   

7.
This paper introduces an accurate real‐time soft shadow algorithm that uses sample based visibility. Initially, we present a GPU‐based alias‐free hard shadow map algorithm that typically requires only a single render pass from the light, in contrast to using depth peeling and one pass per layer. For closed objects, we also suppress the need for a bias. The method is extended to soft shadow sampling for an arbitrarily shaped area‐/volumetric light source using 128‐1024 light samples per screen pixel. The alias‐free shadow map guarantees that the visibility is accurately sampled per screen‐space pixel, even for arbitrarily shaped (e.g. non‐planar) surfaces or solid objects. Another contribution is a smooth coherent shading model to avoid common light leakage near shadow borders due to normal interpolation.  相似文献   

8.
The incident indirect light over a range of image pixels is often coherent. Two common approaches to exploit this inter‐pixel coherence to improve rendering performance are Irradiance Caching and Radiance Caching. Both compute incident indirect light only for a small subset of pixels (the cache), and later interpolate between pixels. Irradiance Caching uses scalar values that can be interpolated efficiently, but cannot account for shading variations caused by normal and reflectance variation between cache items. Radiance Caching maintains directional information, e.g., to allow highlights between cache items, but at the cost of storing and evaluating a Spherical Harmonics (SH) function per pixel. The arithmetic and bandwidth cost for this evaluation is linear in the number of coefficients and can be substantial. In this paper, we propose a method to replace it by an efficient per‐cache item pre‐filtering based on MIP maps — such as previously done for environment maps — leading to a single constant‐time lookup per pixel. Additionally, per‐cache item geometry statistics stored in distance‐MIP maps are used to improve the quality of each pixel's lookup. Our approximate interactive global illumination approach is an order of magnitude faster than Radiance Caching with Phong BRDFs and can be combined with Monte Carlo‐raytracing, Point‐based Global Illumination or Instant Radiosity.  相似文献   

9.
We introduce Boundary‐Aware Extinction Maps for interactive rendering of massive heterogeneous volumetric datasets. Our approach is based on the projection of the extinction along light rays into a boundary‐aware function space, focusing on the most relevant sections of the light paths. This technique also provides an alternative representation of the set of participating media, allowing scattering simulation methods to be applied on arbitrary volume representations. Combined with a simple out‐of‐core rendering framework, Boundary‐Aware Extinction Maps are valuable tools for interactive applications as well as production previsualization and rendering.  相似文献   

10.
We present an approach to improve the search efficiency for near‐optimal motion synthesis using motion graphs. An optimal or near‐optimal path through a motion graph often leads to the most intuitive result. However, finding such a path can be computationally expensive. Our main contribution is a bidirectional search algorithm. We dynamically divide the search space evenly and merge two search trees to obtain the final solution. This cuts the maximum search depth almost in half and leads to significant speedup. To illustrate the benefits of our approach, we present an interactive sketching interface that allows users to specify complex motions quickly and intuitively.  相似文献   

11.
This paper presents a new, scalable, single pass algorithm for computing subsurface scattering using the diffusion approximation. Instead of pre‐computing a globally conservative estimate of the surface irradiance like previous two pass methods, the algorithm simultaneously refines hierarchical and adaptive estimates of both the surface irradiance and the subsurface transport. By using an adaptive, top‐down refinement method, the algorithm directs computational effort only to simulating those eye‐surface‐light paths that make significant contributions to the final image. Because the algorithm is driven by image importance, it scales more efficiently than previous methods that have a linear dependence on translucent surface area. We demonstrate that in scenes with many translucent objects and in complex lighting environments, our new algorithm has a significant performance advantage.  相似文献   

12.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

13.
Temporal coherence is an important problem in Non‐Photorealistic Rendering for videos. In this paper, we present a novel approach to enhance temporal coherence in video painting. Instead of painting on video frame, our approach first partitions the video into multiple motion layers, and then places the brush strokes on the layers to generate the painted imagery. The extracted motion layers consist of one background layer and several object layers in each frame. Then, background layers from all the frames are aligned into a panoramic image, on which brush strokes are placed to paint the background in one‐shot. The strokes used to paint object layers are propagated frame by frame using smooth transformations defined by thin plate splines. Once the background and object layers are painted, they are projected back to each frame and blent to form the final painting results. Thanks to painting a single image, our approach can completely eliminate the flickering in background, and temporal coherence on object layers is also significantly enhanced due to the smooth transformation over frames. Additionally, by controlling the painting strokes on different layers, our approach is easy to generate painted video with multi‐style. Experimental results show that our approach is both robust and efficient to generate plausible video painting.  相似文献   

14.
Simulation of light transport through lens systems plays an important role in graphics. While basic imaging properties can be conveniently derived from linear models (like ABCD matrices), these approximations fail to describe nonlinear effects and aberrations that arise in real optics. Such effects can be computed by proper ray tracing, for which, however, finding suitable sampling and filtering strategies is often not a trivial task. Inspired by aberration theory, which describes the deviation from the linear ray transfer in terms of wavefront distortions, we propose a ray‐space formulation for nonlinear effects. In particular, we approximate the analytical solution to the ray tracing problem by means of a Taylor expansion in the ray parameters. This representation enables a construction‐kit approach to complex optical systems in the spirit of matrix optics. It is also very simple to evaluate, which allows for efficient execution on CPU and GPU alike, including the computation of mixed derivatives of any order. We evaluate fidelity and performance of our polynomial model, and show applications in high‐quality offline rendering and at interactive frame rates.  相似文献   

15.
In this paper we present a novel method for high‐quality rendering of scenes with participating media. Our technique is based on instant radiosity, which is used to approximate indirect illumination between surfaces by gathering light from a set of virtual point lights (VPLs). It has been shown that this principle can be applied to participating media as well, so that the combined single scattering contribution of VPLs within the medium yields full multiple scattering. As in the surface case, VPL methods for participating media are prone to singularities, which appear as bright “splotches” in the image. These artifacts are usually countered by clamping the VPLs' contribution, but this leads to energy loss within the short‐distance light transport. Bias compensation recovers the missing energy, but previous approaches are prohibitively costly. We investigate VPL‐based methods for rendering scenes with participating media, and propose a novel and efficient approximate bias compensation technique. We evaluate our technique using various test scenes, showing it to be visually indistinguishable from ground truth.  相似文献   

16.
We address the problem of denoising Monte Carlo renderings by studying existing approaches and proposing a new algorithm that yields state‐of‐the‐art performance on a wide range of scenes. We analyze existing approaches from a theoretical and empirical point of view, relating the strengths and limitations of their corresponding components with an emphasis on production requirements. The observations of our analysis instruct the design of our new filter that offers high‐quality results and stable performance. A key observation of our analysis is that using auxiliary buffers (normal, albedo, etc.) to compute the regression weights greatly improves the robustness of zero‐order models, but can be detrimental to first‐order models. Consequently, our filter performs a first‐order regression leveraging a rich set of auxiliary buffers only when fitting the data, and, unlike recent works, considers the pixel color alone when computing the regression weights. We further improve the quality of our output by using a collaborative denoising scheme. Lastly, we introduce a general mean squared error estimator, which can handle the collaborative nature of our filter and its nonlinear weights, to automatically set the bandwidth of our regression kernel.  相似文献   

17.
Light transport is often characterized within a high‐dimensional space although practitioners have long known that it commonly behaves as a much lower‐dimensional phenomenon. We study the effective dimension of light transport over a neighborhood on the scene manifold and show that under plausible assumptions the dimensionality is characterized by the spectrum of the spatio‐spectral concentration problem. This allows us to improve existing estimates for the dimension in computer graphics using a more insightful derivation and for the first time we obtain optimal representations. The relevance of our results for existing rendering applications is discussed.  相似文献   

18.
Screen‐space ambient occlusion and obscurance have become established methods for rendering global illumination effects in real‐time applications. While they have seen a steady line of refinements, their computational complexity has remained largely unchanged and either undersampling artefacts or too high render times limit their scalability. In this paper we show how the fundamentally quadratic per‐pixel complexity of previous work can be reduced to a linear complexity. We solve obscurance in discrete azimuthal directions by performing line sweeps across the depth buffer in each direction. Our method builds upon the insight that scene points along each line can be incrementally inserted into a data structure such that querying for the largest occluder among the visited samples along the line can be achieved at an amortized constant cost. The obscurance radius therefore has no impact on the execution time and our method produces accurate results with smooth occlusion gradients in a few milliseconds per frame on commodity hardware.  相似文献   

19.
We present a new and accurate method to render the atmosphere in real time from any viewpoint from ground level to outer space, while taking Rayleigh and Mie multiple scattering into account. Our method reproduces many effects of the scattering of light, such as the daylight and twilight sky color and aerial perspective for all view and light directions, or the Earth and mountain shadows (light shafts) inside the atmosphere. Our method is based on a formulation of the light transport equation that is precomputable for all view points, view directions and sun directions. We show how to store this data compactly and propose a GPU compliant algorithm to precompute it in a few seconds. This precomputed data allows us to evaluate at runtime the light transport equation in constant time, without any sampling, while taking into account the ground for shadows and light shafts.  相似文献   

20.
We propose a unified rendering approach that jointly handles motion and defocus blur for transparent and opaque objects at interactive frame rates. Our key idea is to create a sampled representation of all parts of the scene geometry that are potentially visible at any point in time for the duration of a frame in an initial rasterization step. We store the resulting temporally‐varying fragments (t‐fragments) in a bounding volume hierarchy which is rebuild every frame using a fast spatial median construction algorithm. This makes our approach suitable for interactive applications with dynamic scenes and animations. Next, we perform spatial sampling to determine all t‐fragments that intersect with a specific viewing ray at any point in time. Viewing rays are sampled according to the lens uv‐sampling for depth‐of‐field effects. In a final temporal sampling step, we evaluate the predetermined viewing ray/t‐fragment intersections for one or multiple points in time. This allows us to incorporate all standard shading effects including transparency. We describe the overall framework, present our GPU implementation, and evaluate our rendering approach with respect to scalability, quality, and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号