首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We introduce a novel method for non‐rigid shape matching, designed to address the symmetric ambiguity problem present when matching shapes with intrinsic symmetries. Unlike the majority of existing methods which try to overcome this ambiguity by sampling a set of landmark correspondences, we address this problem directly by performing shape matching in an appropriate quotient space, where the symmetry has been identified and factored out. This allows us to both simplify the shape matching problem by matching between subspaces, and to return multiple solutions with equally good dense correspondences. Remarkably, both symmetry detection and shape matching are done without establishing any landmark correspondences between either points or parts of the shapes. This allows us to avoid an expensive combinatorial search present in most intrinsic symmetry detection and shape matching methods. We compare our technique with state‐of‐the‐art methods and show that superior performance can be achieved both when the symmetry on each shape is known and when it needs to be estimated.  相似文献   

2.
We present a registration algorithm for pairs of deforming and partial range scans that addresses the challenges of non‐rigid registration within a single non‐linear optimization. Our algorithm simultaneously solves for correspondences between points on source and target scans, confidence weights that measure the reliability of each correspondence and identify non‐overlapping areas, and a warping field that brings the source scan into alignment with the target geometry. The optimization maximizes the region of overlap and the spatial coherence of the deformation while minimizing registration error. All optimization parameters are chosen automatically; hand‐tuning is not necessary. Our method is not restricted to part‐in‐whole matching, but addresses the general problem of partial matching, and requires no explicit prior correspondences or feature points. We evaluate the performance and robustness of our method using scan data acquired by a structured light scanner and compare our method with existing non‐rigid registration algorithms.  相似文献   

3.
4.
Despite the large amount of work devoted in recent years to the problem of non‐rigid shape matching, practical methods that can successfully be used for arbitrary pairs of shapes remain elusive. In this paper, we study the hardness of the problem of shape matching, and introduce the notion of the shape condition number, which captures the intuition that some shapes are inherently more difficult to match against than others. In particular, we make a connection between the symmetry of a given shape and the stability of any method used to match it while optimizing a given distortion measure. We analyze two commonly used classes of methods in deformable shape matching, and show that the stability of both types of techniques can be captured by the appropriate notion of a condition number. We also provide a practical way to estimate the shape condition number and show how it can be used to guide the selection of landmark correspondences between shapes. Thus we shed some light on the reasons why general shape matching remains difficult and provide a way to detect and mitigate such difficulties in practice.  相似文献   

5.
We present a robust and efficient algorithm for the pairwise non‐rigid registration of partially overlapping 3D surfaces. Our approach treats non‐rigid registration as an optimization problem and solves it by alternating between correspondence and deformation optimization. Assuming approximately isometric deformations, robust correspondences are generated using a pruning mechanism based on geodesic consistency. We iteratively learn an appropriate deformation discretization from the current set of correspondences and use it to update the correspondences in the next iteration. Our algorithm is able to register partially similar point clouds that undergo large deformations, in just a few seconds. We demonstrate the potential of our algorithm in various applications such as example based articulated segmentation, and shape interpolation.  相似文献   

6.
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non‐rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non‐rigid multi‐part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non‐rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario.  相似文献   

7.
8.
We present a robust method to find region‐level correspondences between shapes, which are invariant to changes in geometry and applicable across multiple shape representations. We generate simplified shape graphs by jointly decomposing the shapes, and devise an adapted graph‐matching technique, from which we infer correspondences between shape regions. The simplified shape graphs are designed to primarily capture the overall structure of the shapes, without reflecting precise information about the geometry of each region, which enables us to find correspondences between shapes that might have significant geometric differences. Moreover, due to the special care we take to ensure the robustness of each part of our pipeline, our method can find correspondences between shapes with different representations, such as triangular meshes and point clouds. We demonstrate that the region‐wise matching that we obtain can be used to find correspondences between feature points, reveal the intrinsic self‐similarities of each shape and even construct point‐to‐point maps across shapes. Our method is both time and space efficient, leading to a pipeline that is significantly faster than comparable approaches. We demonstrate the performance of our approach through an extensive quantitative and qualitative evaluation on several benchmarks where we achieve comparable or superior performance to existing methods.  相似文献   

9.
10.
11.
12.
We consider the problem of finding meaningful correspondences between 3D models that are related but not necessarily very similar. When the shapes are quite different, a point‐to‐point map is not always appropriate, so our focus in this paper is a method to build a set of correspondences between shape regions or parts. The proposed approach exploits a variety of feature functions on the shapes and makes use of the key observation that points in matching parts have similar ranks in the sorting of the corresponding feature values. Our algorithm proceeds in two steps. We first build an affinity matrix between points on the two shapes, based on feature rank similarity over many feature functions. We then define a notion of stability of a pair of regions, with respect to this affinity matrix, obtained as a fixed point of a nonlinear operator. Our method yields a family of corresponding maximally stable regions between the two shapes that can be used to define shape parts. We observe that this is an instance of the biclustering problem and that it is related to solving a constrained maximal eigenvalue problem. We provide an algorithm to solve this problem that mimics the power method. We show the robustness of its output to noisy input features as well its convergence properties. The obtained part correspondences are shown to be almost perfect matches in the isometric case, and also semantically appropriate even in non‐isometric cases. We provide numerous examples and applications of this technique, for example to sharpening correspondences in traditional shape matching algorithms.  相似文献   

13.
We present a multiple shape correspondence method based on dynamic programming, that computes consistent bijective maps between all shape pairs in a given collection of initially unmatched shapes. As a fundamental distinction from previous work, our method aims to explicitly minimize the overall distortion, i.e., the average isometric distortion of the resulting maps over all shape pairs. We cast the problem as optimal path finding on a graph structure where vertices are maps between shape extremities. We exploit as much context information as possible using a dynamic programming based algorithm to approximate the optimal solution. Our method generates coarse multiple correspondences between shape extremities, as well as denser correspondences as by‐product. We assess the performance on various mesh sequences of (nearly) isometric shapes. Our experiments show that, for isometric shape collections with non‐uniform triangulation and noise, our method can compute relatively dense correspondences reasonably fast and outperform state of the art in terms of accuracy.  相似文献   

14.
In this paper, a new method for deformable 3D shape registration is proposed. The algorithm computes shape transitions based on local similarity transforms which allows to model not only as‐rigid‐as‐possible deformations but also local and global scale. We formulate an ordinary differential equation (ODE) which describes the transition of a source shape towards a target shape. We assume that both shapes are roughly pre‐aligned (e.g., frames of a motion sequence). The ODE consists of two terms. The first one causes the deformation by pulling the source shape points towards corresponding points on the target shape. Initial correspondences are estimated by closest‐point search and then refined by an efficient smoothing scheme. The second term regularizes the deformation by drawing the points towards locally defined rest positions. These are given by the optimal similarity transform which matches the initial (undeformed) neighborhood of a source point to its current (deformed) neighborhood. The proposed ODE allows for a very efficient explicit numerical integration. This avoids the repeated solution of large linear systems usually done when solving the registration problem within general‐purpose non‐linear optimization frameworks. We experimentally validate the proposed method on a variety of real data and perform a comparison with several state‐of‐the‐art approaches.  相似文献   

15.
Several applications in shape modeling and exploration require identification and extraction of a 3D shape part matching a 2D sketch. We present CustomCut, an on‐demand part extraction algorithm. Given a sketched query, CustomCut automatically retrieves partially matching shapes from a database, identifies the region optimally matching the query in each shape, and extracts this region to produce a customized part that can be used in various modeling applications. In contrast to earlier work on sketch‐based retrieval of predefined parts, our approach can extract arbitrary parts from input shapes and does not rely on a prior segmentation into semantic components. The method is based on a novel data structure for fast retrieval of partial matches: the randomized compound k‐NN graph built on multi‐view shape projections. We also employ a coarse‐to‐fine strategy to progressively refine part boundaries down to the level of individual faces. Experimental results indicate that our approach provides an intuitive and easy means to extract customized parts from a shape database, and significantly expands the design space for the user. We demonstrate several applications of our method to shape design and exploration.  相似文献   

16.
We address the scale problem inherent to isometric shape correspondence in a combinatorial matching framework. We consider a particular setting of the general correspondence problem where one of the two shapes to be matched is an isometric (or nearly isometric) part of the other up to an arbitrary scale. We resolve the scale ambiguity by finding a coarse matching between shape extremities based on a novel scale‐invariant isometric distortion measure. The proposed algorithm also supports (partial) dense matching, that alleviates the symmetric flip problem due to initial coarse sampling. We test the performance of our matching algorithm on several shape datasets in comparison to state of the art. Our method proves useful, not only for partial matching, but also for complete matching of semantically similar hybrid shape pairs whose maximum geodesic distances may not be compatible, a case that would fail most of the conventional isometric shape matchers.  相似文献   

17.
18.
We study an algorithmic framework for computing an elastic orientation‐preserving matching of non‐rigid 3D shapes. We outline an Integer Linear Programming formulation whose relaxed version can be minimized globally in polynomial time. Because of the high number of optimization variables, the key algorithmic challenge lies in efficiently solving the linear program. We present a performance analysis of several Linear Programming algorithms on our problem. Furthermore, we introduce a multiresolution strategy which allows the matching of higher resolution models.  相似文献   

19.
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.  相似文献   

20.
This paper proposes a new shadow removal approach for input single natural image by using subregion matching illumination transfer We first propose an effective and automatic shadow detection algorithm incorporating global successive thresholding scheme and local boundary refinement. Then we present a novel shadow removal algorithm by performing illumination transfer on the matched subregion pairs between the shadow regions and non‐shadow regions, and this method can process complex images with different kinds of shadowed texture regions and illumination conditions. In addition, we develop an efficient shadow boundary processing method by using alpha matte interpolation, which produces seamless transition between the shadow and non‐shadow regions. Experimental results demonstrate the capabilities of our algorithm in both the shadow removal quality and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号