首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image completion techniques aim to complete selected regions of an image in a natural looking manner with little or no user interaction. Video Completion, the space–time equivalent of the image completion problem, inherits and extends both the difficulties and the solutions of the original 2D problem, but also imposes new ones—mainly temporal coherency and space complexity (videos contain significantly more information than images). Data‐driven approaches to completion have been established as a favoured choice, especially when large regions have to be filled. In this survey, we present the current state of the art in data‐driven video completion techniques. For unacquainted researchers, we aim to provide a broad yet easy to follow introduction to the subject (including an extensive review of the image completion foundations) and early guidance to the challenges ahead. For a versed reader, we offer a comprehensive review of the contemporary techniques, sectioned out by their approaches to key aspects of the problem.  相似文献   

2.
We present an alternative approach to create digital camouflage images which follows human's perception intuition and complies with the physical creation procedure of artists. Our method is based on a two‐scale decomposition scheme of the input images. We modify the large‐scale layer of the background image by considering structural importance based on energy optimization and the detail layer by controlling its spatial variation. A gradient correction is presented to prevent halo artifacts. Users can control the difficulty level of perceiving the camouflage effect through a few parameters. Our camouflage images are natural and have less long coherent edges in the hidden region. Experimental results show that our algorithm yields visually pleasing camouflage images.  相似文献   

3.
A person's handwriting appears differently within a typical range of variations, and the shapes of handwriting characters also show complex interaction with their nearby neighbors. This makes automatic synthesis of handwriting characters and paragraphs very challenging. In this paper, we propose a method for synthesizing handwriting texts according to a writer's handwriting style. The synthesis algorithm is composed by two phases. First, we create the multidimensional morphable models for different characters based on one writer's data. Then, we compute the cursive probability to decide whether each pair of neighboring characters are conjoined together or not. By jointly modeling the handwriting style and conjoined property through a novel trajectory optimization, final handwriting words can be synthesized from a set of collected samples. Furthermore, the paragraphs’ layouts are also automatically generated and adjusted according to the writer's style obtained from the same dataset. We demonstrate that our method can successfully synthesize an entire paragraph that mimic a writer's handwriting using his/her collected handwriting samples.  相似文献   

4.
This article focuses on real‐time image correction techniques that enable projector‐camera systems to display images onto screens that are not optimized for projections, such as geometrically complex, coloured and textured surfaces. It reviews hardware‐accelerated methods like pixel‐precise geometric warping, radiometric compensation, multi‐focal projection and the correction of general light modulation effects. Online and offline calibration as well as invisible coding methods are explained. Novel attempts in super‐resolution, high‐dynamic range and high‐speed projection are discussed. These techniques open a variety of new applications for projection displays. Some of them will also be presented in this report.  相似文献   

5.
Annoying shaky motion is one of the significant problems in home videos, since hand shake is an unavoidable effect when capturing by using a hand‐held camcorder. Video stabilization is an important technique to solve this problem, but the stabilized videos resulting from some current methods usually have decreased resolution and are still not so stable. In this paper, we propose a robust and practical method of full‐frame video stabilization while considering user's capturing intention to remove not only the high frequency shaky motions but also the low frequency unexpected movements. To guess the user's capturing intention, we first consider the regions of interest in the video to estimate which regions or objects the user wants to capture, and then use a polyline to estimate a new stable camcorder motion path while avoiding the user's interested regions or objects being cut out. Then, we fill the dynamic and static missing areas caused by frame alignment from other frames to keep the same resolution and quality as the original video. Furthermore, we smooth the discontinuous regions by using a three‐dimensional Poisson‐based method. After the above automatic operations, a full‐frame stabilized video can be achieved and the important regions and objects can also be preserved.  相似文献   

6.
Color quantization replaces the color of each pixel with the closest representative color, and thus it makes the resulting image partitioned into uniformly-colored regions. As a consequence, continuous, detailed variations of color over the corresponding regions in the original image are lost through color quantization. In this paper, we present a novel blind scheme for restoring such variations from a color-quantized input image without a priori knowledge of the quantization method. Our scheme identifies which pairs of uniformly-colored regions in the input image should have continuous variations of color in the resulting image. Then, such regions are seamlessly stitched through optimization while preserving the closest representative colors. The user can optionally indicate which regions should be separated or stitched by scribbling constraint brushes across the regions. We demonstrate the effectiveness of our approach through diverse examples, such as photographs, cartoons, and artistic illustrations.  相似文献   

7.
Creating variations of an image object is an important task, which usually requires manipulating the skeletal structure of the object. However, most existing methods (such as image deformation) only allow for stretching the skeletal structure of an object: modifying skeletal topology remains a challenge. This paper presents a technique for synthesizing image objects with different skeletal structures while respecting to an input image object. To apply this technique, a user firstly annotates the skeletal structure of the input object by specifying a number of strokes in the input image, and draws corresponding strokes in an output domain to generate new skeletal structures. Then, a number of the example texture pieces are sampled along the strokes in the input image and pasted along the strokes in the output domain with their orientations. The result is obtained by optimizing the texture sampling and seam computation. The proposed method is successfully used to synthesize challenging skeletal structures, such as skeletal branches, and a wide range of image objects with various skeletal structures, to demonstrate its effectiveness.  相似文献   

8.
Restoration of the photographs damaged by the camera shake is a challenging task that manifested increasing attention in the recent period. Despite of the important progress of the blind deconvolution techniques, due to the ill-posed nature of the problem, the finest details of the kernel blur cannot be recovered entirely. Moreover, the additional constraints and prior assumptions make these approaches to be relative limited.
In this paper we introduce a novel technique that removes the undesired blur artifacts from photographs taken by hand-held digital cameras. Our approach is based on the observation that in general several consecutive photographs taken by the users share image regions that project the same scene content. Therefore, we took advantage of additional sharp photographs of the same scene. Based on several invariant local feature points, filtered from the given blurred/non-blurred images, our approach matches the keypoints and estimates the blur kernel using additional statistical constraints.
We also present a simple deconvolution technique that preserves edges while minimizing the ringing artifacts in the restored latent image. The experimental results prove that our technique is able to infer accurately the blur kernel while reducing significantly the artifacts of the spoilt images.  相似文献   

9.
Hidden images contain one or several concealed foregrounds which can be recognized with the assistance of clues preserved by artists. Experienced artists are trained for years to be skilled enough to find appropriate hidden positions for a given image. However, it is not an easy task for amateurs to quickly find these positions when they try to create satisfactory hidden images. In this paper, we present an interactive framework to suggest the hidden positions and corresponding results. The suggested results generated by our approach are sequenced according to the levels of their recognition difficulties. To this end, we propose a novel approach for assessing the levels of recognition difficulty of the hidden images and a new hidden image synthesis method that takes spatial influence into account to make the foreground harmonious with the local surroundings. During the synthesis stage, we extract the characteristics of the foreground as the clues based on the visual attention model. We validate the effectiveness of our approach by performing two user studies, including the quality of the hidden images and the suggestion accuracy.  相似文献   

10.
Creating realistic human movement is a time consuming and labour intensive task. The major difficulty is that the user has to edit individual joints while maintaining an overall realistic and collision free posture. Previous research suggests the use of data‐driven inverse kinematics, such that one can focus on the control of a few joints, while the system automatically composes a natural posture. However, as a common problem of kinematics synthesis, penetration of body parts is difficult to avoid in complex movements. In this paper, we propose a new data‐driven inverse kinematics framework that conserves the topology of the synthesizing postures. Our system monitors and regulates the topology changes using the Gauss Linking Integral (GUI), such that penetration can be efficiently prevented. As a result, complex motions with tight body movements, as well as those involving interaction with external objects, can be simulated with minimal manual intervention. Experimental results show that using our system, the user can create high quality human motion in real‐time by controlling a few joints using a mouse or a multi‐touch screen. The movement generated is both realistic and penetration free. Our system is best applied for interactive motion design in computer animations and games.  相似文献   

11.
Controlling a crowd using multi‐touch devices appeals to the computer games and animation industries, as such devices provide a high‐dimensional control signal that can effectively define the crowd formation and movement. However, existing works relying on pre‐defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data‐driven gesture‐based crowd control system, in which the control scheme is learned from example gestures provided by different users. In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run‐time gesture, our system extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the run‐time control. Our system is accurate and efficient, making it suitable for real‐time applications such as real‐time strategy games and interactive animation controls.  相似文献   

12.
Automatic Conversion of Mesh Animations into Skeleton-based Animations   总被引:1,自引:0,他引:1  
Recently, it has become increasingly popular to represent animations not by means of a classical skeleton‐based model, but in the form of deforming mesh sequences. The reason for this new trend is that novel mesh deformation methods as well as new surface based scene capture techniques offer a great level of flexibility during animation creation. Unfortunately, the resulting scene representation is less compact than skeletal ones and there is not yet a rich toolbox available which enables easy post‐processing and modification of mesh animations. To bridge this gap between the mesh‐based and the skeletal paradigm, we propose a new method that automatically extracts a plausible kinematic skeleton, skeletal motion parameters, as well as surface skinning weights from arbitrary mesh animations. By this means, deforming mesh sequences can be fully‐automatically transformed into fullyrigged virtual subjects. The original input can then be quickly rendered based on the new compact bone and skin representation, and it can be easily modified using the full repertoire of already existing animation tools.  相似文献   

13.
This paper proposes a novel system that “rephotographs” a historical photograph with a collection of images. Rather than finding the accurate viewpoint of the historical photo, users only need to take a number of photographs around the target scene. We adopt the structure from motion technique to estimate the spatial relationship among these photographs, and construct a set of 3D point cloud. Based on the user‐specified correspondences between the projected 3D point cloud and historical photograph, the camera parameters of the historical photograph are estimated. We then combine forward and backward warping images to render the result. Finally, inpainting and content‐preserving warping are used to refine it, and the photograph at the same viewpoint of the historical one is produced by this photo collection.  相似文献   

14.
This paper investigates a new approach for color transfer. Rather than transferring color from one image to another globally, we propose a system with a stroke‐based user interface to provide a direct indication mechanism. We further present a multiple local color transfer method. Through our system the user can easily enhance a defect (source) photo by referring to some other good quality (target) images by simply drawing some strokes. Then, the system will perform the multiple local color transfer automatically. The system consists of two major steps. First, the user draws some strokes on the source and target images to indicate corresponding regions and also the regions he or she wants to preserve. The regions to be preserved which will be masked out based on an improved graph cuts algorithm. Second, a multiple local color transfer method is presented to transfer the color from the target image(s) to the source image through gradient‐guided pixel‐wise color transfer functions. Finally, the defect (source) image can be enhanced seamlessly by multiple local color transfer based on some good quality (target) examples through an interactive and intuitive stroke‐based user interface.  相似文献   

15.
Rendering with full lens model can offer images with photorealistic lens effects, but it leads to high computational costs. This paper proposes a novel camera lens model, NeuroLens, to emulate the imaging of real camera lenses through a data‐driven approach. The mapping of image formation in a camera lens is formulated as imaging regression functions (IRFs), which map input rays to output rays. IRFs are approximated with neural networks, which compactly represent the imaging properties and support parallel evaluation on a graphics processing unit (GPU). To effectively represent spatially varying imaging properties of a camera lens, the input space spanned by incident rays is subdivided into multiple subspaces and each subspace is fitted with a separate IRF. To further raise the evaluation accuracy, a set of neural networks is trained for each IRF and the output is calculated as the average output of the set. The effectiveness of the NeuroLens is demonstrated by fitting a wide range of real camera lenses. Experimental results show that it provides higher imaging accuracy in comparison to state‐of‐the‐art camera lens models, while maintaining the high efficiency for processing camera rays.  相似文献   

16.
We present an Aortic Vortex Classification (AVOCLA) that allows to classify vortices in the human aorta semi‐automatically. Current medical studies assume a strong relation between cardiovascular diseases and blood flow patterns such as vortices. Such vortices are extracted and manually classified according to specific, unstandardized properties. We employ an agglomerative hierarchical clustering to group vortex‐representing path lines as basis for the subsequent classification. Classes are based on the vortex' size, orientation and shape, its temporal occurrence relative to the cardiac cycle as well as its spatial position relative to the vessel course. The classification results are presented by a 2D and 3D visualization technique. To confirm the usefulness of both approaches, we report on the results of a user study. Moreover, AVOCLA was applied to 15 datasets of healthy volunteers and patients with different cardiovascular diseases. The results of the semi‐automatic classification were qualitatively compared to a manually generated ground truth of two domain experts considering the vortex number and five specific properties.  相似文献   

17.
One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.  相似文献   

18.
Many previous approaches to detecting urban change from LIDAR point clouds interpolate the points into rasters, perform pixel‐based image processing to detect changes, and produce 2D images as output. We present a method of LIDAR change detection that maintains accuracy by only using the raw, irregularly spaced LIDAR points, and extracts relevant changes as individual 3D models. We then utilize these models, alongside existing GIS data, within an interactive application that allows the chronological exploration of the changes to an urban environment. A three‐tiered level‐of‐detail system maintains a scale‐appropriate, legible visual representation across the entire range of view scales, from individual changes such as buildings and trees, to groups of changes such as new residential developments, deforestation, and construction sites, and finally to larger regions such as neighborhoods and districts of a city that are emerging or undergoing revitalization. Tools are provided to assist the visual analysis by urban planners and historians through semantic categorization and filtering of the changes presented.  相似文献   

19.
If spatial augmented reality is used in the design process of a car, then one of the most important issues is that the virtual content is projected with a very high visual quality onto the real object, because based on this projection design decisions are made. Especially, the visualised colours on the real object should not be distinguishable from corresponding real reference colours. In this paper, we introduce a new approach for the augmentation of real objects which is able to match the requirements of a design process. We present a new rendering method with ray tracing which increases the visual quality of the projection images in comparison to existing methods. The desired values of these images have further to be adjusted according to the material, the ambient light and the local orientation of the projector. For this purpose, we develop a physically based computation which exactly determines the corresponding projection intensities for these values by using three‐dimensional lookup tables at every projector pixel. Since not all of the desired values can be represented with an intensity of the projector, an adjustment has to be computed for these values. Therefore, we conduct a user study with design experts who work in the automotive industry and use the results to propose a new adjustment method for such values. Finally, we compare our methods to existing procedures and conclude which ones are suitable for the design process of a car.  相似文献   

20.
Many works focus on multi‐spectral capture and analysis, but multi‐spectral display still remains a challenge. Most prior works on multi‐primary displays use ad‐hoc narrow band primaries that assure a larger color gamut, but cannot assure a good spectral reproduction. Content‐dependent spectral analysis is the only way to produce good spectral reproduction, but cannot be applied to general data sets. Wide primaries are better suited for assuring good spectral reproduction due to greater coverage of the spectral range, but have not been explored much. In this paper we explore the use of wide band primaries for accurate spectral reproduction for the first time and present the first content‐independent multi‐spectral display achieved using superimposed projections with modified wide band primaries. We present a content‐independent primary selection method that selects a small set of n primaries from a large set of m candidate primaries where m > n. Our primary selection method chooses primaries with complete coverage of the range of visible wavelength (for good spectral reproduction accuracy), low interdependency (to limit the primaries to a small number) and higher light throughput (for higher light efficiency). Once the primaries are selected, the input values of the different primary channels to generate a desired spectrum are computed using an optimization method that minimizes spectral mismatch while maximizing visual quality. We implement a real prototype of multi‐spectral display consisting of 9‐primaries using three modified conventional 3‐primary projectors, and compare it with a conventional display to demonstrate its superior performance. Experiments show our display is capable of providing large gamut assuring a good visual appearance while displaying any multi‐spectral images at a high spectral accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号