首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depth-of-Field Rendering by Pyramidal Image Processing   总被引:1,自引:0,他引:1  
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps. While previously published methods for interactive depth-of-field rendering suffer from various rendering artifacts such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disocclusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our algorithm by side-by-side comparisons with results obtained by distributed ray tracing.  相似文献   

2.
Diffusion curves are a powerful vector graphic representation that stores an image as a set of 2D Bezier curves with colors defined on either side. These colors are diffused over the image plane, resulting in smooth color regions as well as sharp boundaries. In this paper, we introduce a new automatic diffusion curve coloring algorithm. We start by defining a geometric heuristic for the maximum density of color control points along the image curves. Following this, we present a new algorithm to set the colors of these points so that the resulting diffused image is as close as possible to a source image in a least squares sense. We compare our coloring solution to the existing one which fails for textured regions, small features, and inaccurately placed curves. The second contribution of the paper is to extend the diffusion curve representation to include texture details based on Gabor noise. Like the curves themselves, the defined texture is resolution independent, and represented compactly. We define methods to automatically make an initial guess for the noise texure, and we provide intuitive manual controls to edit the parameters of the Gabor noise. Finally, we show that the diffusion curve representation itself extends to storing any number of attributes in an image, and we demonstrate this functionality with image stippling an hatching applications.  相似文献   

3.
4.
Style transfer aims to apply the style of an exemplar model to a target one, while retaining the target's structure. The main challenge in this process is to algorithmically distinguish style from structure, a high‐level, potentially ill‐posed cognitive task. Inspired by cognitive science research we recast style transfer in terms of shape analogies. In IQ testing, shape analogy queries present the subject with three shapes: source, target and exemplar, and ask them to select an output such that the transformation, or analogy, from the exemplar to the output is similar to that from the source to the target. The logical process involved in identifying the source‐to‐target analogies implicitly detects the structural differences between the source and target and can be used effectively to facilitate style transfer. Since the exemplar has a similar structure to the source, applying the analogy to the exemplar will provide the output we seek. The main technical challenge we address is to compute the source to target analogies, consistent with human logic. We observe that the typical analogies we look for consist of a small set of simple transformations, which when applied to the exemplar generate a continuous, seamless output model. To assemble a shape analogy, we compute an optimal set of source‐to‐target transformations, such that the assembled analogy best fits these criteria. The assembled analogy is then applied to the exemplar shape to produce the desired output model. We use the proposed framework to seamlessly transfer a variety of style properties between 2D and 3D objects and demonstrate significant improvements over the state of the art in style transfer. We further show that our framework can be used to successfully complete partial scans with the help of a user provided structural template, coherently propagating scan style across the completed surfaces.  相似文献   

5.
6.
We present an example‐based approach for radiometrically linearizing photographs that takes as input a radiometrically linear exemplar image and a target regular uncalibrated image of the same scene, possibly from a different viewpoint and/or under different lighting. The output of our method is a radiometrically linearized version of the target image. Modeling the change in appearance of a small image patch seen from a different viewpoint and/or under different lighting as a linear 1D subspace, allows us to recast radiometric transfer in a form similar to classic radiometric calibration from exposure stacks. The resulting radiometric transfer method is lightweight and easy to implement. We demonstrate the accuracy and validity of our method on a variety of scenes.  相似文献   

7.
Raster‐based topographic maps are commonly used in geoinformation systems to overlay geographic entities on top of digital terrain models. Using compressed texture formats for encoding topographic maps allows reducing latency times while visualizing large geographic datasets. Topographic maps encompass high‐frequency content with large uniform regions, making current compressed texture formats inappropriate for encoding them. In this paper we present a method for locally‐adaptive compression of topographic maps. Key elements include a Hilbert scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily‐sized texel runs, a cumulative run‐length encoding supporting fast random‐access, and a compression algorithm supporting lossless and lossy compression. Our scheme can be easily implemented on current programmable graphics hardware allowing real‐time GPU decompression and rendering of bilinear‐filtered topographic maps.  相似文献   

8.
The appearance of weathering effects on stone is important for creating outdoor scenes in computer graphics. To achieve them, previous research has built upon physical simulation, which, while yielding a degree of realism, is computationally expensive and inapplicable to the situation when the object geometry is unknown. Also, physical simulation requires specific knowledge of the stone properties and environmental processes. In this paper, we present a simple visual simulation pipeline for creating weathering effects on stone within a single image. Two primary effects of stone weathering, i.e., smoothing and roughening, are considered. In addition, erosion on the object silhouette is treated. These challenging effects involve significant geometry changes, which are intractable for previous image‐based editing techniques. The effectiveness of our technique is illustrated on a variety of scenes and types of stone. While it can be fully automatic, it also allows easy user interaction.  相似文献   

9.
In this paper, we introduce a new texture metamorphosis approach for interpolating texture samples from a source texture into a target texture. We use a new energy optimization scheme derived from optimal control principles which exploits the structure of the metamorphosis optimality conditions. Our approach considers the change in pixel position and pixel appearance in a single framework. In contrast to previous techniques that compute a global warping based on feature masks of textures, our approach allows to transform one texture into another by considering both intensity values and structural features of textures simultaneously. We demonstrate the usefulness of our approach for different textures, such as stochastic, semi‐structural and regular textures, with different levels of complexities. Our method produces visually appealing transformation sequences with no user interaction.  相似文献   

10.
In this paper we show how to use two‐colored pixels as a generic tool for image processing. We apply two‐colored pixels as a basic operator as well as a supporting data structure for several image processing applications. Traditionally, images are represented by a regular grid of square pixels with one constant color each. In the two‐colored pixel representation, we reduce the image resolution and replace blocks of N × N pixels by one square that is split by a (feature) line into two regions with constant colors. We show how the conversion of standard mono‐colored pixel images into two‐colored pixel images can be computed efficiently by applying a hierarchical algorithm along with a CUDA‐based implementation. Two‐colored pixels overcome some of the limitations that classical pixel representations have, and their feature lines provide minimal geometric information about the underlying image region that can be effectively exploited for a number of applications. We show how to use two‐colored pixels as an interactive brush tool, achieving realtime performance for image abstraction and non‐photorealistic filtering. Additionally, we propose a realtime solution for image retargeting, defined as a linear minimization problem on a regular or even adaptive two‐colored pixel image. The concept of two‐colored pixels can be easily extended to a video volume, and we demonstrate this for the example of video retargeting.  相似文献   

11.
Diorama artists produce a spectacular 3D effect in a confined space by generating depth illusions that are faithful to the ordering of the objects in a large real or imaginary scene. Indeed, cognitive scientists have discovered that depth perception is mostly affected by depth order and precedence among objects. Motivated by these findings, we employ ordinal cues to construct a model from a single image that similarly to Dioramas, intensifies the depth perception. We demonstrate that such models are sufficient for the creation of realistic 3D visual experiences. The initial step of our technique extracts several relative depth cues that are well known to exist in the human visual system. Next, we integrate the resulting cues to create a coherent surface. We introduce wide slits in the surface, thus generalizing the concept of cardboard cutout layers. Lastly, the surface geometry and texture are extended alongside the slits, to allow small changes in the viewpoint which enriches the depth illusion.  相似文献   

12.
In this paper we introduce a new fixed‐rate texture compression scheme based on the energy compaction properties of a modified Haar transform. The coefficients of this transform are quantized and stored using standard block compression methods, such as DXTC and BC7, ensuring simple implementation and very fast decoding speeds. Furthermore, coefficients with the highest contribution to the final image are quantized with higher accuracy, improving the overall compression quality. The proposed modifications to the standard Haar transform, along with a number of additional optimizations, improve the coefficient quantization and reduce the compression error. The resulting method offers more flexibility than the currently available texture compression formats, providing a variety of additional low bitrate encoding modes for the compression of grayscale and color textures.  相似文献   

13.
We present an automatic method to recover high‐resolution texture over an object by mapping detailed photographs onto its surface. Such high‐resolution detail often reveals inaccuracies in geometry and registration, as well as lighting variations and surface reflections. Simple image projection results in visible seams on the surface. We minimize such seams using a global optimization that assigns compatible texture to adjacent triangles. The key idea is to search not only combinatorially over the source images, but also over a set of local image transformations that compensate for geometric misalignment. This broad search space is traversed using a discrete labeling algorithm, aided by a coarse‐to‐fine strategy. Our approach significantly improves resilience to acquisition errors, thereby allowing simple and easy creation of textured models for use in computer graphics.  相似文献   

14.
This paper proposes a new shadow removal approach for input single natural image by using subregion matching illumination transfer We first propose an effective and automatic shadow detection algorithm incorporating global successive thresholding scheme and local boundary refinement. Then we present a novel shadow removal algorithm by performing illumination transfer on the matched subregion pairs between the shadow regions and non‐shadow regions, and this method can process complex images with different kinds of shadowed texture regions and illumination conditions. In addition, we develop an efficient shadow boundary processing method by using alpha matte interpolation, which produces seamless transition between the shadow and non‐shadow regions. Experimental results demonstrate the capabilities of our algorithm in both the shadow removal quality and performance.  相似文献   

15.
Significant progress has been made in high-quality hair rendering, but it remains difficult to choose parameter values that reproduce a given real hair appearance. In particular, for applications such as games where naive users want to create their own avatars, tuning complex parameters is not practical. Our approach analyses a single flash photograph and estimates model parameters that reproduce the visual likeness of the observed hair. The estimated parameters include color absorptions, three reflectance lobe parameters of a multiple-scattering rendering model, and a geometric noise parameter. We use a novel melanin-based model to capture the natural subspace of hair absorption parameters. At its core, the method assumes that images of hair with similar color distributions are also similar in appearance. This allows us to recast the issue as an image retrieval problem where the photo is matched with a dataset of rendered images; we thus also match the model parameters used to generate these images. An earth-mover's distance is used between luminance-weighted color distributions to gauge similarity. We conduct a perceptual experiment to evaluate this metric in the context of hair appearance and demonstrate the method on 64 photographs, showing that it can achieve a visual likeness for a large variety of input photos.  相似文献   

16.
Color transfer is an image processing technique which can produce a new image combining one source image's contents with another image's color style. While being able to produce convincing results, however, Reinhard et al.'s pioneering work has two problems—mixing up of colors in different regions and the fidelity problem. Many local color transfer algorithms have been proposed to resolve the first problem, but the second problem was paid few attentions. In this paper, a novel color transfer algorithm is presented to resolve the fidelity problem of color transfer in terms of scene details and colors. It's well known that human visual system is more sensitive to local intensity differences than to intensity itself. We thus consider that preserving the color gradient is necessary for scene fidelity. We formulate the color transfer problem as an optimization problem and solve it in two steps—histogram matching and a gradient‐preserving optimization. Following the idea of the fidelity in terms of color and gradient, we also propose a metric for objectively evaluating the performance of example‐based color transfer algorithms. The experimental results show the validity and high fidelity of our algorithm and that it can be used to deal with local color transfer.  相似文献   

17.
Creating variations of an image object is an important task, which usually requires manipulating the skeletal structure of the object. However, most existing methods (such as image deformation) only allow for stretching the skeletal structure of an object: modifying skeletal topology remains a challenge. This paper presents a technique for synthesizing image objects with different skeletal structures while respecting to an input image object. To apply this technique, a user firstly annotates the skeletal structure of the input object by specifying a number of strokes in the input image, and draws corresponding strokes in an output domain to generate new skeletal structures. Then, a number of the example texture pieces are sampled along the strokes in the input image and pasted along the strokes in the output domain with their orientations. The result is obtained by optimizing the texture sampling and seam computation. The proposed method is successfully used to synthesize challenging skeletal structures, such as skeletal branches, and a wide range of image objects with various skeletal structures, to demonstrate its effectiveness.  相似文献   

18.
Many interesting real‐world textures are inhomogeneous and/or anisotropic. An inhomogeneous texture is one where various visual properties exhibit significant changes across the texture's spatial domain. Examples include perceptible changes in surface color, lighting, local texture pattern and/or its apparent scale, and weathering effects, which may vary abruptly, or in a continuous fashion. An anisotropic texture is one where the local patterns exhibit a preferred orientation, which also may vary across the spatial domain. While many example‐based texture synthesis methods can be highly effective when synthesizing uniform (stationary) isotropic textures, synthesizing highly non‐uniform textures, or ones with spatially varying orientation, is a considerably more challenging task, which so far has remained underexplored. In this paper, we propose a new method for automatic analysis and controlled synthesis of such textures. Given an input texture exemplar, our method generates a source guidance map comprising: (i) a scalar progression channel that attempts to capture the low frequency spatial changes in color, lighting, and local pattern combined, and (ii) a direction field that captures the local dominant orientation of the texture. Having augmented the texture exemplar with this guidance map, users can exercise better control over the synthesized result by providing easily specified target guidance maps, which are used to constrain the synthesis process.  相似文献   

19.
Represented in a Morphable Model, 3D faces follow curved trajectories in face space as they age. We present a novel algorithm that computes the individual aging trajectories for given faces, based on a non-linear function that assigns an age to each face vector. This function is learned from a database of 3D scans of teenagers and adults using support vector regression. To apply the aging prediction to images of faces, we reconstruct a 3D model from the input image, apply the aging transformation on both shape and texture, and then render the face back into the same image or into images of other individuals at the appropriate ages, for example images of older children. Among other applications, our system can help to find missing children.  相似文献   

20.
Textured Liquids based on the Marker Level Set   总被引:1,自引:0,他引:1  
In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for tracking the surface of the liquid, yielding more efficient and accurate results than popular methods like the Particle Level Set method (PLS). Another novelty is that the surface markers allow the MLS to handle non-diffusively surface texture advection, a rare capability in the realm of Eulerian simulation of liquids. We present several simulations of the dynamical evolution of liquids and their surface textures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号