首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyvinylidene fluoride (PVDF) is a piezo‐polymer which among its crystalline phases, the β‐phase has been researched for the improvement of piezoelectric properties. In this study, to improve the β‐phase contents and thereby the piezoelectric response of the polymer, the effect of adding self‐synthesized ionic liquid surfactant (ILS) in PVDF nanofibers is studied. This material is added in different weight percentages into the PVDF solution and the nanofibers are produced by electrospinning to prepare active piezoelectric thin layers. SEM, XRD, FTIR, and piezo‐tests are employed for assessing the effect of the ILS on the enhancement of β‐phase in electrospun nanofibers and their piezoelectric performance. The results indicate ≈98.6% β‐phase formation in the sample containing 4 wt% ILS and in comparison with the pure nanofibers, the output voltage and its power density are improved 186.9% and 275%, respectively. Considering the results, it is suggested that the ILS can improve the piezoelectric response of the polymer in the fabricated structure by simple mixing in solution compared to other additives.  相似文献   

2.
Core‐shell nanofibers of poly (vinylidene fluoride)/polyaniline/multi‐walled carbon nanotubes (PVDF/PANi/MWCNTs) have been produced using the coaxial electrospinning technique. The nanofibers were semiconductive and had better piezoelectric properties than pure PVDF nanofibers. Piezoelectric PVDF nanofibers are capable of converting mechanical energy into electrical energy, which can be stored in charge storage devices. However, PVDF is not conductive and therefore, a conductive associate material is needed to transfer accumulated static charges into the capacitor. Fourier Transform Infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were carried out to study the crystalline β‐phase of PVDF. There was an increase in β‐phase in the electrospun PVDF nanofibers filled with MWCNTs as compared with compression molded samples of neat PVDF. Incorporation of PANi as an intrinsically conductive polymer (ICP) and MWCNTs as conductive nanofiller helps the movement of static charges. Core‐shell nanofibers had conductivities of about seven orders of magnitude higher than simple electrospun nanofibers. POLYM. COMPOS., 35:1198–1203, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Nonwoven nanofiber mats of polyvinylidene fluoride (PVDF) with modified layered double hydroxide (MLDH) were prepared by electrospinning. The fiber morphology was studied using scanning electron microscopy. X‐ray diffraction and FTIR spectroscopy was used to characterize the polymorphism in electrospun mats. Fibers of diameter in the range 80–800 nm with beads of about 2–3 µm size were observed for pure PVDF, while in case of PVDF/MLDH nanocomposites the number and size of beads were found to be significantly reduced. Uniform and fine nanofibers were obtained at lower content of MLDH, but slightly rough surface was seen for higher content. FTIR and X‐ray diffraction patterns signify various crystalline forms of electrospun PVDF. The content of polar β‐crystalline phase of PVDF, which exhibit piezo and ferroelectric properties was found to be enhanced significantly due to reinforcement of MLDH. Use of these nanofiber mats for heavy metal Cu (II) removal was explored. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4508–4515, 2013  相似文献   

4.
The characteristics of poly(vinylidene fluoride) (PVDF) nanofibers, prepared by applying the electrospinning technique from N,N‐dimethylformamide/acetone mixtures, were studied by varying the experimental conditions. The nanofiber morphology was assessed by scanning electron microscopy, while wide angle X‐ray diffraction and infrared spectroscopy were performed to study the crystallinity. The influence of the electrospinning conditions, such as kind of solvent mixture, polymer concentration, voltage tension, airflow and humidity, on nanofiber morphology was studied. In particular, the latter parameter, generally not considered, was found to modify the electrospun mat structure in a relevant way. Generally, the above technique turns out to be capable of strongly affecting the polymorphism of the polymer, namely β phase formation was higher in the electrospun mats compared with cast films, which displayed a non‐polar α crystal phase. As far as the influence of the electrospinning conditions on PVDF crystal structure is concerned, modification of the experimental parameters did not affect the α/β ratio. Nevertheless, comparing the behavior of two commercial PVDF samples with similar molecular masses, our results show that the polymer which forms a higher content of β phase in its cast films allowed electrospun mats characterized by almost complete formation of β phase to be obtained. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
The effective fabrication of polar crystalline structures of poly (vinylidene fluoride) (PVDF), such as beta and gamma, is crucial to the development of piezoelectric polymer devices. In this study, we report the effect of pressure on binary fullerene C70/PVDF‐based composite with an overall good C70 dispersion, which was prepared by an easy physical and mechanical route. The C70/PVDF composites were crystallized in a piston‐cylinder high‐pressure apparatus, and the polymeric crystalline structures totally with extended‐chain piezoelectric beta‐ or gamma‐form lamellae were successfully achieved in the composite samples by varying temperature, pressure, crystallization time, and composite composition. The c‐axis thickness of the extended‐chain beta‐form lamellae of PVDF in the composites increased and decreased with the increase of the applied temperature and pressure, respectively, and it increased with the increase of crystallization time. Although C70 was found to be negative for the rapid formation of beta‐form PVDF crystals, it played an important role in the growth of a beta‐form PVDF nanowire with extended‐chain crystalline substructures. The template‐free formation of such piezoelectric nanowires was attributed to a C70‐induced self‐assembly of the polymer, driven by physical interactions at high pressure. The pressure‐crystallized C70/PVDF composites, self‐reinforced with unique one‐dimensional piezoelectric structures, may diversify niche applications in advanced functional polymeric devices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1823–1833, 2013  相似文献   

6.
The effects of melt‐spinning and cold‐drawing parameters on the formation of β‐phase crystallinity in poly(vinylidene fluoride) (PVDF) fibers and ways of increasing such crystallinity were studied. Fibers were melt‐spun with four different melt draw ratios (MDRs) and were subsequently cold‐drawn at different draw ratios (λ). The maximum λ value in cold drawing was dependent on the MDR used in melt spinning. The crystalline structure of the fibers was studied mainly with differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). The results showed that the degree of crystallinity in the fibers was determined by the MDR and that before cold drawing the crystalline structure of the fibers was predominantly in the α form. By cold drawing, α‐phase crystallites could be transformed into the β phase. It was established that, under certain conditions of melt spinning and cold drawing, PVDF fibers of up to 80% crystallinity, mainly in the β form, could be prepared. It was further proposed that fibers spun at a sufficiently high MDR consist to a large extent of extended‐chain crystals, and this greatly affects the melting point of PVDF. Thus, DSC melting‐point data were shown to be insufficient for determining the crystalline phase of PVDF. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
This article investigates the effects of solvent polarity and salt addition on β‐phase poly(vinylidene fluoride) (PVDF) formation. Films were solvent cast in aprotic solvents of varying polarities with or without salt addition. Characterization was done by Fourier transformed infra‐red spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Decreasing fractions of β‐phase PVDF was observed with increasing drying temperature when less polar solvents were used. The most polar solvent (hexamethylphosphoramide) consistently produced films with at least 90.0% β‐phase PVDF within the crystalline regions. Melting temperatures increased in correlation to absolute proportions of β‐phase PVDF. Salt addition increased the formation of β‐phase PVDF by 30%, with salts of higher valencies and smaller ionic radii resulting in more significant increases. Taken collectively, using solvents of higher polarities and addition of salts with high cationic valencies and small ionic radii will maximize β‐phase formation in solvent cast PVDF films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
β相聚偏氟乙烯(PVDF)因其具有良好的压电、热电性能而受到广泛的关注。采用静电纺丝的方法一步得到高β相含量的PVDF纤维膜,利用X射线衍射(XRD)谱图以及后续的处理分析静电纺过程中的纺丝参数对制备的PVDF纤维膜的结晶度以及结晶部分中β相含量的影响,从而得到了制备高β相含量PVDF的最优化的静电纺丝条件。  相似文献   

9.
When poly(vinylidene fluoride) (PVDF) is to be used as a piezoelectric material, the processing must include the formation of polar β‐phase crystallites, as well as the application of electrically conducting charge collectors, that is, electrodes. In this article, results from the melt spinning of PVDF yarns and a novel bicomponent PVDF‐yarn with a conductive carbon black/polypropylene (CB/PP) core are presented. Melt spinning has been done under conditions typical for industrial large‐scale fiber production. The effects on the resulting crystalline structure of varying the spinning velocity, draw rate, and draw temperature are discussed. The results show that, for maximum α‐to‐β phase transformation, cold drawing should take place at a temperature between 70 and 90°C, and both the draw ratio and the draw rate should be as high as possible. It was observed that the cold drawing necessary to form β‐phase crystallinity simultaneously leads to a decrease in the core conductivity of the bicomponent yarns. In this work, the melt spinning of bicomponent fibers with high‐β‐phase PVDF in the sheath and a CB/PP core was successfully accomplished. The core material remained electrically conductive, paving the way for the use of a CB‐polymer compound as inner electrode in the melt spinning of piezoelectric bicomponent fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Poly vinylidene fluoride (PVDF) membranes were prepared via supercritical CO2 induced phase separation. The effects of solvent power on PVDF membrane morphology and polymorphism were investigated using N‐N‐dimethylformamide (DMF), triethyl phosphate (TEP), and their mixture respectively. The morphology evolution including cross‐section and surfaces were thoroughly studied by scanning electron microscope (SEM) and atomic force microscopy (AFM). The differences of solubility parameters between the solvent and PVDF affected the phase separation and the resultant morphology. The various crystalline phases of the membranes were mainly investigated by Fourier transform infrared spectroscopy (FTIR) and X‐ray diffractometer (XRD). Solvent with larger dipole moment tended to form polar β phase. Decreasing the difference of solubility parameters favored the formation of α phase. Furthermore, the effects of salt additive on PVDF membrane morphology and crystalline form were studied as well. Results turned out that lithium chloride (LiCl) induced a porous top surface and boosted the formation of β phase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41065.  相似文献   

11.
Poly(vinylidene difluoride) (PVDF) has piezoelectric properties suitable for numerous applications such as flexible electronics, sensing and biomedical materials. In this study, individual fibers with diameters ranging from 17 to 55 µm were processed using melt electrowriting (MEW). Electroactive PVDF fibers can be fabricated via MEW, while the polymer can remain molten for up to 10 h without noticeable changes in the resulting fiber diameter. MEW processing parameters for PVDF were investigated, including applied voltage, pressure and temperature. A rapid fiber characterization methodology for MEW that automatically determines the fiber diameters from camera images taken of microscope slides was developed and validated. The outputs from this approach followed previous MEW processing trends already identified with different polymers, although overestimation of fiber diameters <25 µm was observed. The transformation of the PVDF crystalline phase to the electroactive β phase was confirmed using piezo‐force microscopy and revealed that the PVDF fibers possess piezoelectric responses showing d33 ≈ 19 pm V–1. © 2018 Society of Chemical Industry  相似文献   

12.
Poly(vinylidene fluoride) (PVDF) was electrospun into ultrafine fibrous membranes from its solutions in a mixture of N,N‐dimethylformamide and acetone (9:1, v/v). The electrospun membranes were subsequently treated by continuous hot‐press at elevated temperatures up to 155°C. Changes of morphology, crystallinity, porosity, liquid absorption, and mechanical properties of the membranes after hot‐press were investigated. Results of scanning electron microscopy showed that there were no significant changes in fibrous membrane morphology when the hot‐press temperature varied from room temperature to 130°C, but larger pores were formed because of fibers melting and bonding under higher temperatures. Analyses of X‐ray diffraction and differential scanning calorimeter exhibited that the crystalline form of PVDF could transfer from β‐type to α‐type during hot‐press at temperatures higher than 65°C. Tensile tests suggested that the mechanical properties of the electrospun PVDF membranes were remarkably enhanced from 25 to 130°C, whereas the porosity and the liquid absorption decreased. The hot‐press at 130°C was optimal for the electrospun PVDF membranes. The continuous hot‐press post‐treatment could be a feasible method to produce electrospun membranes, not limited to PVDF, with suitable mechanical properties as well as good porosity and liquid absorption for their applications in high‐quality filtrations or battery separators. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
Wu Aik Yee  Ye Liu 《Polymer》2007,48(2):512-521
The morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) (PVDF) fibers have been investigated. We found that electrospinning of PVDF from its N,N-dimethylformamide/acetone solutions led to the formation of β-phase. In contrast, only α- and γ-phase was detected in the spin-coated samples from the same solutions. In the aligned electrospun PVDF fibers obtained using a rotating disk collector, the β-phase crystallites had a preferred orientation along the fiber axis. The degree of orientation did not, however, vary significantly with the speed of the rotation disk collector, and the β-phase was also not significantly enhanced with the increase in the rotation speed or the decrease in the size of spinnerets. These facts indicated that the orientation was likely to be caused by Columbic force rather than the mechanical and shear forces exerted by the rotating disk collector and spinnerets. The Columbic force may induce local conformational change to straighter TTTT conformation, and hence promote the β-phase. The addition of 3 wt.% of tetrabutylammonium chloride (TBAC) into the polymer solutions effectively improved the morphology of the electrospun fibers, and led to almost pure β-phase in the fibers. With spin coating, PVDF-TBAC did not, however, show any strong β-phase diffraction peak. The synergistic β-enhancement effect of TBAC and electrospinning is possibly due to the fact that while TBAC could induce more trans conformers, electrospinning promotes parallel packing, and hence inter-chain registration.  相似文献   

14.
Piezo‐ and ferroelectric nanofibers of the polymer poly(vinylidenefluoride) (PVDF) have been widely employed in strain and pressure sensors as well as nanogenerators for energy harvesting. Despite this interest, the mechanism of electromechanical transduction is under debate and a deeper knowledge about relevant piezoelectric or electrostatic properties of nanofibers is crucial to optimize transduction efficiency. Here poly(vinylidenefluoride‐trifluoroethylene) nanofibers at different electrospinning conditions are prepared. Macroscopic electromechanical response of fiber mats with microscopic analysis of single nanofibers performed by piezoelectric and electrostatic force microscopy are compared. The results show that electrospinning favors the formation of the piezoelectric β‐phase in the polymer and leads directly to piezoelectric properties that are comparable to annealed thin films. However, during electrospinning the electric field is not strong enough to induce direct ferroelectric domain polarization. Instead accumulation of triboelectric surface charges and trapped space charge is observed in the polymer that explain the electret like macroscopic electromechanical response.  相似文献   

15.
Poly(vinylidene fluoride) (PVDF)/polycarbonate (PC) dispersed solutions were electrospun into ultrafine core/shell fibers and modified by hot‐press. Morphology, tensile properties, porosity, and liquid absorption of the electrospun membranes as well as the crystallinity of PVDF were examined before and after hot‐press. Results showed that the tensile strength and tensile modulus of the electrospun membranes increased after hot‐press, especially when poly(methyl methacrylate) (PMMA) or benzyl triethylammonium chloride (BTEAC) was introduced for the formation of distinct core/shell fiber structure. The elongation of the hot‐pressed electrospun PVDF/PC membrane with addition of BTEAC was also significantly enhanced by reason of the clearest core/shell structure. The crystallinity of PVDF did not change too much before and after hot‐press, however the porosity and liquid absorption of the hot‐pressed electrospun membranes decreased to about 58% and around 75–90%, respectively, with no significant differences between PVDF/PC, PVDF/PC/PMMA, and PVDF/PC with BTEAC membranes. This study could be an example of electrospun membranes in multi‐polymer components and it could be extended to other systems of electrospinning for applications in filtration and so on. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
In the present study, the morphology and mechanical properties of nylon‐6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip‐to‐collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon‐6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon‐6. The morphology of electrospun fibers also depended on tip‐to‐collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The β‐phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α‐phase. The α‐phase is transformed to piezoelectric β‐phase when the film is hot‐stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α‐ to β‐phases by using X‐ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β‐phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
Electrospun fiber webs were prepared at various spinning conditions. The effect of electrospinning parameters on fiber morphology and filtration performance of electrospun webs was investigated. The processing variables considered were only the applied voltage and rotation speed of a drum type collector. The fiber diameter and mean pore size of the electrospun webs decreased with increasing applied voltage and collector speed. Pressure drop and aerosol collection efficiency of the electrospun fiber webs were increased with decreasing fiber and pore size. Additionally, it was found that the filtration performance of the electrospun web was much greater than that of a commercial high efficiency air filter media made of glass fibers.  相似文献   

19.
The emerging field of energy harvesting depends on the electrically conductive materials that are highly flexible and deformable. The morphological, structural, thermal, mechanical, and piezoelectric output studies of electrospun polyvinylidene fluoride (PVDF) and PVDF/WO3 nanorods composite nanofibers were investigated for the piezoelectric energy harvesting applications. There is a significant enhancement in the piezoelectric β phase after the addition of the WO3 nanorods into the PVDF. The elemental composition of the PVDF/WO3 nanorods composite nanofibers is confirmed by the W, O, F, and C elements. The thermal stability of the WO3 nanorods added composite nanofibers was increased up to 30°C in reference to TGA responses. Based on the mechanical test, the maximum tensile strength and modulus of elasticity were enhanced around by 220 and 246% for the WO3-integrated PVDF nanofibers. Furthermore, the piezoelectric coefficient of 18.98 pC/N is achieved for the composite PVDF nanofibers which are mainly due to the improvement of the electroactive β phase. The piezoelectric energy harvesting responses were found an output voltage of 2.1 V based on the microstrain set-up. Thus, these WO3 nanorods incorporated PVDF nanofibers keep the great potential for the piezoelectric energy harvesting, wearable electronics and biomedical applications.  相似文献   

20.
Ionic liquid(IL), 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6) as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF) membranes via thermally induced phase separation(TIPS). Phase diagram of PVDF/[BMIM]PF6 was measured. The effects of polymer concentration and quenching temperature on the morphologies, properties, and performances of the PVDF membranes were investigated. When the polymer concentration was 15 wt%, the pure water flux of the fabricated membrane was up to nearly 2000 L·m~(-2)·h~(-1), along with adequate mechanical strength. With the increasing of PVDF concentration and quenching temperature, mean pore size and water permeability of the membrane decreased. SEM results showed that PVDF membranes manufactured by ionic liquid(BMIm PF6) presented spherulite structure. And the PVDF membranes were represented as β phase by XRD and FTIR characterization. It provides a new way to prepare PVDF membranes with piezoelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号