首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present an adaptive level set method for motion of high codimensional objects (e.g., curves in three dimensions). This method uses only two (or a few fixed) levels of meshes. A uniform coarse mesh is defined over the whole computational domain. Any coarse mesh cell that contains the moving object is further divided into a uniform fine mesh. The coarse‐to‐fine ratios in the mesh refinement can be adjusted to achieve optimal efficiency. Refinement and coarsening (removing the fine mesh within a coarse grid cell) are performed dynamically during the evolution. In this adaptive method, the computation is localized mostly near the moving objects; thus, the computational cost is significantly reduced compared with the uniform mesh over the whole domain with the same resolution. In this method, the level set equations can be solved on these uniform meshes of different levels directly using standard high‐order numerical methods. This method is examined by numerical examples of moving curves and applications to dislocation dynamics simulations. This two‐level adaptive method also provides a basis for using locally varying time stepping to further reduce the computational cost. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A Composite Grid Method for Moving Conductor Eddy-Current Problem   总被引:1,自引:0,他引:1  
We present fundamentals and procedures of a composite grid method (CGM) for determining eddy currents in moving conductors. Based on the finite-element method (FEM), CGM uses two separate mesh grids - one coarse and one fine - to calculate in the global region and local region separately. The results of the coarse mesh are interpolated onto the boundary of the fine mesh as its Dirichlet's condition. Then two equations are solved in the fine mesh region in order to obtain the reaction force on the boundary, which is reacted on the coarse mesh to modify its right-hand-side load vector. And the equations in the coarse mesh are re-solved. The iteration continues until the results converge. The advantage of CGM is that it allows two overlapped grids differing greatly in size to be meshed independently. Also, the program is easy to modularize and thus has great flexibility and adaptability. Above all, it ensures good numerical accuracy in each grid set. As an example indicates, CGM is effective in handling 2-D moving conductor eddy-current problems that are tedious to solve by conventional methods such as re-meshing or using a Lagrange multiplier.  相似文献   

3.
A multigrid method is described that can solve the generalized eigenvalue problem encountered in structural dynamics. The algorithm combines relaxation on a fine mesh with the solution of a singular equation on a coarse mesh. A sequence of coarser meshes may be used to quickly solve this singular equation using another multigrid method. The hierarchy of increasingly finer meshes can be further exploited using a nested iteration scheme, whereby initial approximations to the fine mesh eigenvectors are computed using interpolated coarse mesh eigenvectors. The solution of some simple plate problems on a Convex C240 demonstrates the efficiency of a vectorized version of the multigrid algorithm.  相似文献   

4.
When using a Eulerian finite element approach to model the material deformation that occurs in e.g. forming processes, the accurate capturing of friction is of crucial importance to the quality of the computational results. For the algorithm that incorporates the frictional phenomena into the system of equations, the direction of the contact surface normal in a node is an essential parameter. However, this normal is not uniquely defined in the nodes of a curved, discretized surface. Therefore, a substitute normal has to be reconstructed. The commonly used (averaging) methods to determine the normal are either mesh or geometry dependent which renders poor results on coarse meshes. Therefore, a new method is presented that reconstructs the direction of the normal from the flow field near the node. Comparing the flow fields on a coarse mesh with those obtained on a very fine mesh reveals that a more accurate solution field is obtained using the method introduced here. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the strategies of evolving the coarse mesh configurations in the context of the Galerkin multi‐grid (GMG) method when dealing with problems involving large deformations. A new coarse mesh evolution scheme, which continuously and in a simple manner moves the coarse mesh nodal points along with the deformation of the fine mesh, is proposed and its two implementation versions aiming at further improving the efficiency of the scheme are also developed. In addition, the practical aspects of integrating the GMG with adaptive remeshing techniques are discussed. Finally, several large strain elasto‐plastic problems are presented to verify the performances of the proposed schemes and the behaviour of the combined GMG/mesh adaptivity is also illustrated. Numerical results show that up to 40 per cent reduction in the number of MG iterations has been achieved by the new coarse mesh evolution scheme. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
We present a modification of the multiscale finite element method (MsFEM) for modeling of heterogeneous viscoelastic materials and an enhancement of this method by the adaptive generation of both meshes, ie, a macroscale coarse one and a microscale fine one. The fine mesh refinements are performed independently within coarse elements adjusting the microscale discretization to the microstructure, whereas the coarse mesh adaptation optimizes the macroscale approximation. Besides the coupling of the hp‐adaptive finite element method with the MsFEM we propose a modification of the MsFEM to accommodate for the analysis of transient nonlinear problems. We illustrate the efficiency and accuracy of the new approach for a number of benchmark examples, including the modeling of functionally graded material, and demonstrate the potential of our improvement for upscaling nonperiodic and nonlinear composites.  相似文献   

7.
In this paper, a method is presented to measure the non‐conformity of a mesh with respect to a size specification map given in the form of a Riemannian metric. The measure evaluates the difference between the metric tensor of a simplex of the mesh and the metric tensor specified on the size specification map. This measure is universal because it is a unique, dimensionless number which characterizes either a single simplex of a mesh or a whole mesh, both in size and in shape, be it isotropic or anisotropic, coarse or fine, in a small or a big domain, in two or three dimensions. This measure is important because it can compare any two meshes in order to determine unequivocally which of them is better. Analytical and numerical examples illustrate the behaviour of this measure. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A local grid refinement scheme for the material point method with B-spline basis functions (BSMPM) is developed based on the concept of bridging domain approach. The fine grid is defined in the local large-deformation regions to accurately capture the complex material responses, whereas other spatial domains are discritized by coarse grids. In the overlapping domain between the fine and coarse grids, the constraint of particle displacements obtained with different grids is enforced using the Lagrange multiplier method to eliminate the spurious stress reflection at the fine/coarse grid interface. Representative numerical examples have shown that the BSMPM simulations with the proposed local grid refinement scheme could provide the solutions in good agreement with those obtained with the uniformly fine grid, and that no significant spurious stress reflection is induced at the fine/coarse grid interface, even for the bridging domain size as small as the cell size of the fine grid. It is also found that the proposed local grid refinement method can significantly reduce the BSMPM computational time compared with the cases for uniformly fine grids. A multitime-step algorithm is presented and shown to considerably enhance the efficiency of the present local grid refinement scheme with no compromise in accuracy.  相似文献   

9.
This paper describes a novel solution method for the transported probability density function (PDF) equation for scalars (compositions). In contrast to conventional solution methods based on the Monte Carlo approach, we use a finite‐volume method combined with adaptive mesh refinement (AMR) applied in both physical and compositional space. The obvious advantage of this over a uniform grid is that fine meshes are only used where the solution requires high resolution. The efficiency of the method is demonstrated by a number of tests involving a turbulent jet flow with up to two scalars (both reacting and non‐reacting). We find that the AMR calculation can be at a fraction of the computer cost of a uniform grid calculation with the same accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A class of preconditioners built around a coarse/fine mesh framework is presented. The proposed method involves the reconstruction of the stiffness equations using a coarse/fine mesh idealization with relative degrees-of-freedom derived from the element shape functions. This approach leads naturally to effective preconditioners for iterative solvers which only require a factorization involving coarse mesh variables. A further extension is the application of the proposed method to super-elements in conjunction with substructuring (domain decomposition) techniques. The derivation of the coarse/fine mesh discretization via the use of transformation matrices, allows a straightforward implementation of the proposed techniques (as well as multigrid type procedures) within an existing finite element system.  相似文献   

11.
We present a scheme for solving two‐dimensional semilinear reaction–diffusion equations using an expanded mixed finite element method. To linearize the mixed‐method equations, we use a two‐grid algorithm based on the Newton iteration method. The solution of a non‐linear system on the fine space is reduced to the solution of two small (one linear and one non‐linear) systems on the coarse space and a linear system on the fine space. It is shown that the coarse grid can be much coarser than the fine grid and achieve asymptotically optimal approximation as long as the mesh sizes satisfy H=O(h1/3). As a result, solving such a large class of non‐linear equation will not be much more difficult than solving one single linearized equation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, a reduced-order model based on adaptive finite element meshes and a correction term obtained by using an artificial neural network (FAN-ROM) is presented. The idea is to run a high-fidelity simulation by using an adaptively refined finite element mesh and compare the results obtained with those of a coarse mesh finite element model. From this comparison, a correction forcing term can be computed for each training configuration. A model for the correction term is built by using an artificial neural network, and the final reduced-order model is obtained by putting together the coarse mesh finite element model, plus the artificial neural network model for the correction forcing term. The methodology is applied to nonlinear solid mechanics problems, transient quasi-incompressible flows, and a fluid-structure interaction problem. The results of the numerical examples show that the FAN-ROM is capable of improving the simulation results obtained in coarse finite element meshes at a reduced computational cost.  相似文献   

13.
In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.  相似文献   

14.
针对二维半线性抛物方程,本文提出了两种二重网格差分算法,并给出了误差估计。该算法能够在粗网格和细网格上线性地求解半线性问题。若重复算法的最后几步可以按粗网格步长任意阶地逼近细网格上的非线性解。  相似文献   

15.
16.
This paper describes a neural network graph partitioning algorithm which partitions unstructured finite element/volume meshes as a precursor to a parallel domain decomposition solution method. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialize an optimization of the graph partition problem. In practice, a hierarchy of (usually more than two) graphs are used to help obtain the final graph partition. A mean field theorem neural network is used to perform all partition optimization. The partitioning method is applied to graphs derived from unstructured finite element meshes and in this context it can be viewed as a multi‐grid partitioning method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
We present two efficient methods of two‐grid scheme for the approximation of two‐dimensional semi‐linear reaction‐diffusion equations using an expanded mixed finite element method. To linearize the discretized equations, we use two Newton iterations on the fine grid in our methods. Firstly, we solve an original non‐linear problem on the coarse grid. Then we use twice Newton iterations on the fine grid in our first method, and while in second method we make a correction on the coarse grid between two Newton iterations on the fine grid. These two‐grid ideas are from Xu's work (SIAM J. Sci. Comput. 1994; 15 :231–237; SIAM J. Numer. Anal. 1996; 33 :1759–1777) on standard finite element method. We extend the ideas to the mixed finite element method. Moreover, we obtain the error estimates for two algorithms of two‐grid method. It is showed that coarse space can be extremely coarse and we achieve asymptotically optimal approximation as long as the mesh sizes satisfy H =??(h¼) in the first algorithm and H =??(h?) in second algorithm. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a coupling method of the finite element method and the boundary element method to compute the transmembrane potential (TMP) of an erythrocyte in a low-frequency electric field. We compute an in vitro erythrocyte's TMP induced by external electric fields by this hybrid method. It takes advantage of the homogeneous characteristics from both intracellular region and extracellular region. Moreover, we may use a fine three-dimensional (3-D) mesh around the thin membrane and avoid 3-D meshes in other regions. Numerical results of a spherical cell show that the hybrid method is accurate. The computed threshold of the applied electric field for membrane electric breakdown agrees well with those experimental results. Numerical results can also guide us to locate the maximum induced TMP on the erythrocyte membrane in various electric fields. Some further applications of the hybrid method are also discussed.  相似文献   

19.
A parallel implementation of an adaptive finite element program is treated which is characterized by an underlying parallel dynamic data structure based on linked lists and tree structures. In conjunction with a conjugate gradient solver an efficient methodology for treating adaptive finite element systems is shown. This is achieved by preconditioning using hierarchical bases with and without a coarse grid solver and by new methods of quasi-optimal load balancing. The different levels of nested meshes needed for preconditioning are governed either by global or by adaptive refinements. A termination algorithm based on the vector method is implemented for the non deterministic adaptive mesh refinement procedure. The problems concerning load balancing due to adaptive refinement are solved by a dynamic load balancing for the nodes.This work has been supported by Deutsche Forschungsgemeinschaft under grant no. Ste238/26.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号