共查询到19条相似文献,搜索用时 62 毫秒
1.
基于空间约束的离群点挖掘 总被引:1,自引:0,他引:1
由于现有的空间离群点检测算法没有很好地解决空间数据的自相关性和异质性约束问题,提出用计算邻域距离的方法解决空间自相关性约束问题,用计算空间局部离群系数的方法解决空间异质性约束问题。用离群系数表示对象的离群程度,并将离群系数按降序排列,取离群系数最大的前m个对象为离群点,据此提出基于空间约束的离群点挖掘算法。实验结果表明,所提算法比已有算法具有更高的检测精度、更低的用户依赖性和更高的效率。 相似文献
2.
基于距离和基于密度的离群点检测算法受到维度和数据量伸缩性的挑战, 而空间数据的自相关性和异质性决定了以属性相互独立和分类属性的基于信息理论的离群点检测算法也难以适应空间离群点检测, 因此提出了基于全息熵的混合属性空间离群点检测算法。算法利用区域标志属性进行区域划分, 在区域内利用空间关系确定空间邻域, 并用R*-树进行检索。在此基础上提出了基于全息熵的空间离群度的度量方法和空间离群点挖掘算法, 有效解决了混合属性的离群度的度量和离群点的挖掘问题。由于实现区域划分有利于并行计算, 从而可适应大数据量的计算。理论和实验证明, 所提算法在计算效率和实验结果的可解释性方面均具有优势。 相似文献
3.
空间离群点是指与其邻居具有明显区别的属性值的空间对象。已有的空间离散点检测算法一个主要的缺陷就是这些方法导致一些真正的离群点被忽略而把一些非离群点当成了空间离群点。本文提出了一种迭代算法,该算法通过多次迭代检测离群点,取得较好效果。实验表明该算法具有较好的实用性。 相似文献
4.
局部离群点挖掘算法研究 总被引:14,自引:0,他引:14
离群点可分为全局离群点和局部离群点.在很多情况下,局部离群点的挖掘比全局离群点的挖掘更有意义.现有的基于局部离群度的离群点挖掘算法存在检测精度依赖于用户给定的参数、计算复杂度高等局限.文中提出将对象属性分为固有属性和环境属性,用环境属性确定对象邻域、固有属性计算离群度的方法克服上述局限;并以空间数据为例,将空间属性与非空间属性分开,用空间属性确定空间邻域,用非空间属性计算空间离群度,设计了空间离群点挖掘算法.实验结果表明,所提算法具有对用户依赖性少、检测精度高、可伸缩性强和运算效率高的优点. 相似文献
5.
6.
空间离群点是指与其邻居具有明显区别的属性值的空间对象。已有的空间离散点检测算法一个主要的缺陷就是这些方法导致一些真正的离群点被忽略而把一些非离群点当成了空间离群点。提出了一种迭代算法,该算法通过多次迭代检测离群点,取得较好效果。实验表明该算法具有较好的实用性。 相似文献
7.
空间离群点的检测算法 总被引:2,自引:0,他引:2
空间离群点是指与其邻居具有明显区别的属性值的空间对象.已有的空间离散点检测算法一个主要的缺陷就是这些方法导致一些真正的离群点被忽略而把一些非离群点当成了空问离群点.提出了一种迭代算法,该算法通过多次迭代检测离群点,取得较好效果.实验表明该算法具有较好的实用性. 相似文献
8.
9.
10.
LOF算法是一个著名的局部离群点查找方法,该方法赋予了表征每一个空间点偏离程度的数值。但LOF算法存在效率低和性能差的问题,为此对该算法进行了以下两个方面的改进:第一,提出了降低该算法时间复杂度的两步改进方法,并对这两步改进方法的时间复杂度也进行详细分析,第二,使得该算法在查找局部离群点时,不仅考虑了空间属性,也考虑了非空间属性。另外还通过实验测试了LOF算法及其改进方法的时间效率,以及在模拟数据和真实数据情况下的查找离群点的效果。实验结果表明,改进方法具有更好的时间效率和性能。 相似文献
11.
与传统的K-近邻算法不同,提出了一种结合属性值贡献度与平均相似度的KNN改进算法。首先考虑测试样本与相似样本点间的平均相似度,其次考虑不同类别中的相似样本点的个数,最后还考虑与相似样本相同的属性值对类别的贡献度。在蘑菇数据集上进行实验结果表明,改进后的KNN分类算法的准确率比传统的K-近邻分类算法的准确率更高。 相似文献
12.
13.
维度灾难直接影响到K最临近算法(KNN)的效率和准确率,将信息论中的信息熵理论与KNN算法结合起来,用信息熵理论进行属性约简,并根据特征属性与分类的相关度来确定各属性的权限,从而建立相关度与权重的内在联系。仿真实验表明,与传统的KNN相比,基于熵权的KNN改进方法在保持分类效率的情况下,使分类器的准确率得到了极大的提高。 相似文献
14.
一种改进的KNN文本分类 总被引:2,自引:0,他引:2
在文本分类中,文本特征空间维数巨大以及训练样本分布不均衡等问题影响分类性能。针对这个问题,提出一种改进的KNN分类方法。利用隐含语义分析方法对特征样本空间进行降维处理;利用基于样本密度的改进的KNN分类器进行分类。实验结果表明提出的方法能够收到较好的分类效果。 相似文献
15.
KNN是最著名的模式识别统计学方法之一。它是一种无参数分类方法,由于其分类的简单有效性,因此得到较为广泛的应用。但是对KNN分类系统的全面评价还有待进一步研究。提出的改进加权KNN算法相比之下具有更高和更加稳定的识别率。因为它在经典KNN算法基础上增加加权距离和类间相似度信息,比经典KNN这种单纯依靠投票的分类方法更加可靠,在分类识别研究中更具有研究和应用价值。 相似文献
16.
针对大多数离群数据检测方法依赖于用户确定参数以及维灾现象,给出了一种基于基尼指标加权的离群子空间与离群数据挖掘方法。该方法通过计算各个维上去一划分的基尼指标值来生成数据对象的离群子空间及属性权向量,在子空间中采用基于统计离群数据挖掘的思想来挖掘离群数据;不需输入参数,结果更具客观性,并且能够适应高维离群数据挖掘;最后采用恒星光谱数据集,验证了可行性和有效性。 相似文献
17.
18.
KNN算法是一种简单、有效且易于实现的分类算法,可用于类域较大的分类。近年来对KNN算法的研究偏向于静态大数据集,不过,在越来越多的情况下要用KNN算法在线实时处理流数据。考虑到流式数据流量大,连续且快速,不易存储和恢复等特性,以及流处理系统Storm对流数据处理具有实时性、可靠性的特点,提出了基于Storm的流数据KNN分类算法,该算法首先对整个样本集进行划分,形成多个片集,然后计算出待分类向量在各片集上的[K]近邻,最后再将所有片集[K]近邻归约得出整体[K]近邻,实现待分类向量的分类。实验结果表明,基于Storm的流数据KNN分类算法能够满足大数据背景下对流数据分类的高吞吐量、可扩展性、实时性和准确性的要求。 相似文献