首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于改进的混合高斯模型的运动目标检测   总被引:4,自引:1,他引:3       下载免费PDF全文
针对现有方法在复杂多变环境下不能很好地检测出运动物体的问题,提出了改进的基于混合高斯模型的背景消减法,并对运动目标进行检测。模型初始化时,提出了一种能准确得到实际背景模型的方法;在模型更新中引入了加速因子和合理性反馈使得模型能更快、更准确地反应真实的背景。实验结果表明,同传统检测方法相比,改进的混合高斯模型方法能有效地消除物体发生运动时产生的拖影,并能很好地检测出运动物体。  相似文献   

2.
针对混合高斯背景模型存在的背景信息易被污染和前景异物目标检测不全的问题,提出了一种基于改进混合高斯模型(GMM)的异物入侵检测算法.该方法结合混合高斯背景模型和小波变换原理对运动目标进行检测.利用小波变换消除设备和噪声导致的背景建模过程产生的干扰点;提出基于邻域平均算法的像素修正算法,进行混合高斯建模,得到最终的背景模...  相似文献   

3.
道路视频监控中经常存在车辆缓慢运动或短暂停留的情况。针对传统混合高斯模型背景减除法对环境突变敏感和对缓慢运动目标丢失信息的问题,提出一种改进的自适应车辆检测方法。首先,在参数更新前对像素值分类并根据分类结果设置模型更新率,抑制缓慢运动前景被训练成背景;引入一个跟踪环境变化的度量因子,当环境突变时实现背景减除和帧差法的自适应切换,滤除环境变化的干扰;最后通过生态学滤波得到准确的运动目标。实验表明,该算法对白天实时路况视频中的运动车辆具有较好的检测效果。  相似文献   

4.
目前在国内的透明液体生产线上,液体通常采用人工检测,效率低、准确率,所以基于图形处理算法以及QT,设计了一套基于智能视觉的透明液体杂质颗粒检测软件,重点实现了软件与算法的改进优化;获取的连续图像经自适应中值滤波预处理去除图像噪声后,通过改进的序列图像二次差分算法提取出序列图中的细小的异物,然后根据通过SIFT特征度量的MeanShift目标跟踪算法,跟踪液体图像中的细小异物;并根据异物的运动轨迹及大小,检测到有无异物以及异物的类型,进而进一步判断透明药品质量是否合格;结果测试表明,软件的准确率达到95%以上,检测分辨率达到了44μm,基本可以替代透明液体生产线上的人工检测。  相似文献   

5.
HSV自适应混合高斯模型的运动目标检测   总被引:3,自引:1,他引:2  
林庆  徐柱  王士同  詹永照 《计算机科学》2010,37(10):254-256,290
在目前的计算机视觉应用中,从视频序列中提取出运动目标是一个研究热点。针对传统方法在复杂多变环境下不能很好地检测出运动目标且运算量较大的问题,根据HSV颜色空间的特点,提出了一种基于HSV颜色空间的自适应混合高斯背景建模和阴影消除的方法。首先,在传统的混合高斯背景建模的基础上,引入了一种新的混合高斯模型高斯成分个数的自适应选择策略以提高建模的效率。其次,根据阴影在HSV向量空间的特点,融入了一种新的阴影消除方法,以检测出带阴影的运动目标。该方法能够快速准确地建立背景模型,准确分割前景目标。与传统的阴影消除方法相比,该方法可以在不需要设置阂值的情况下,对运动目标的阴影进行很好的消除,有很好的鲁棒性和实用性。  相似文献   

6.
基于高斯混合模型的海面运动目标检测   总被引:5,自引:1,他引:5  
提出了一种基于变化检测的高斯混合模型参数估计方法,建立了象素点背景模型并用于海面运动目标的检测。在实验部分,将该方法估计的高斯混合背景模型的参数与基于迭代的EM算法估计的模型参数做比较,模拟实验的结果表明两者估计的参数值相差不大,而在对视频流中的象素点灰度值分布的逼近中,该文的方法比EM算法更接近真实的分布,并且在一定程度上减少了建立背景模型的所需的内存和计算时间。运动目标检测的结果表明,使用该方法建立的背景模型可以比较准确地检测到海面上的运动船只。  相似文献   

7.
基于混合高斯模型的运动目标检测   总被引:1,自引:0,他引:1  
提出了一种新的基于HSV颜色空间的阴影检测和误判检测的自适应背景模型运动目标检测算法,并将其应用于运动物体的分割。该算法较好地解决了背景模型的提取、更新、背景扰动、外界光照变化等问题。实验结果表明了该算法的实时性、可靠性和准确性较好。  相似文献   

8.
韩劲松 《计算机工程》2012,38(5):205-207
传统金属工业构件X射线图像检测手段主观性过强、检测效率低下。为此,提出一种基于高斯混合模型(GMM)的智能检测方法。对同一构件的图像序列进行在线学习,每一像素点由多个高斯分布分量组成。正常工作时对每一像素点用学习到的高斯分量进行模式分 类,若不符合任一现有高斯分量就视为前景目标(损伤点),采用种子生长法连通损伤区域,确定整个损伤区域。实验结果表明,该方法可精确定位构件损伤部位,实现金属构件损伤的自动检测,检测效率较高。  相似文献   

9.
基于主动视觉的运动目标检测跟踪方法   总被引:2,自引:0,他引:2  
卢瑾  方俊  张健 《计算机仿真》2012,29(7):278-281,291
研究主动视觉运动目标检测跟踪系统。针对图像目标跟踪多为非连续动态过程,准确性差,通过混合高斯法建立背景模型,采用背景差分法,利用最大类间方差算法确定阈值,检测分割出运动目标,提出一种结合SURF算法的带宽自适应均值漂移跟踪算法实现目标跟踪,使用线程并行控制摄像机运动,确保跟踪目标在图像序列中的合适尺寸。实验表明,改进系统能够实现对场景中运动目标的准确检测,稳定跟踪,并能到达实时应用的要求。  相似文献   

10.
利用高斯混合模型的SAR图像目标CFAR检测新方法   总被引:2,自引:2,他引:0  
SAR(合成孔径雷达)图像杂波分布模型种类繁多且对实际地物的建模能力有限。在使用基于杂波统计模型的CFAR(恒虚警率)算法对SAR图像进行目标检测时,杂波统计模型的失配会导致检测结果产生较大的CFAR损失,算法精度不高。提出了一种基于高斯混合模型的CFAR检测新方法。该方法以理论上可以拟合任意形状概率密度分布的高斯混合模型对实际SAR图像的背景杂波进行拟合,利用拟合后得到的分布模型,根据CFAR检测的原理推导出目标检测阈值的计算公式完成目标的检测。新方法对服从不同分布模型的背景杂波,使用形式上统一的模型进行描述,克服了CFAR检测高度依赖背景杂波分布的缺点,提高了CFAR的通用性。实验结果表明,即使在背景杂波类型未知的情况下,新方法依然得到了良好的目标检测效果。  相似文献   

11.
针对在线K-均值聚类法初始化混合高斯模型(KGMM)在运行时间、空间复杂度、噪声等方面存在的缺陷,提出了基于KGMM改进的检测方法,采用加入方差因子的C-均值聚类准则来初始化混合高斯模型,有效解决了可能出现的某一像素值属于不同分布类从而概率不同的问题,提高了检测的灵活性;改进了高斯匹配准则,提高了检测算法的准确性;对每个像素点间隔地建立混合高斯分布,减少了高斯模型个数,节省了存储空间,提高了算法的运行速度。实验结果表明改进的检测算法检测效果更理想。  相似文献   

12.
融合高斯混合模型和小波变换的运动目标检测   总被引:1,自引:1,他引:1       下载免费PDF全文
当前景目标与背景在颜色上接近时,仅采用高斯混合模型进行目标检测容易导致误判。为了提高模型分割算法的鲁棒性,提出一种融合高斯混合模型和小波变换的运动目标检测算法。通过小波变换提取图像的纹理特征信息,利用高斯混合模型拟合背景信息。将两者融合起来,把纹理信息作为颜色信息的补偿,保证了模型在线更新背景信息时模型的稳定性和收敛性,同时弥补了目标分割中前景与背景颜色信息接近时容易导致误判的不足。实验结果表明,本文方法比经典高斯混合模型方法具有较高的分割精度。  相似文献   

13.
新型背景混合高斯模型   总被引:3,自引:2,他引:3       下载免费PDF全文
针对背景减除法中经典混合高斯模型计算量过大的问题,提出一种新的背景混合高斯模型。该方法利用偏差均值作为判断模型是否与当前像素值匹配的阈值参数,有效减少了经典模型中由于开平方及指数运算带来的庞大计算量;同时引入持续平稳时间的概念,采用非线性权值更新方法,能够使较长时间停留在场景中的物体迅速成为背景。实验结果表明,该方法显著提高了背景模型的计算效率。  相似文献   

14.
一种改进的混合高斯模型背景估计方法   总被引:1,自引:0,他引:1  
蒋明  潘姣丽 《微型机与应用》2011,30(11):31-33,36
传统混合高斯模型一般为每个像素分配固定的高斯分布个数,从而造成背景形成速度的减慢和系统资源的浪费;同时也存在着高斯模型背景建模中的缓慢或滞留运动物体造成目标误判现象的问题(即空洞问题)。为此,提出了一种有效的两阶段视频图像处理方法。该方法在第一阶段根据像素点的优先级大小自动地调节高斯分布的数目,在第二阶段首先对像素点进行所属区域的划分,进而对目标区域和非目标区域采取不同的更新手段。实验表明,采用两阶段视频图像处理方法明显地改善了背景建模的速度,有效解决了提取目标出现的空洞问题。  相似文献   

15.
混合高斯模型和帧间差分相融合的自适应背景模型   总被引:10,自引:2,他引:10       下载免费PDF全文
提出了运动目标检测中背景动态建模的一种方法。该方法是在Stauffer等人提出的自适应混合高斯背景模型基础上,为每个像素构建混合高斯背景模型,通过融入帧间差分把每帧中的图像区分为背景区域、背景显露区域和运动物体区域。相对于背景区域,背景显露区中的像素点将以大的更新率更新背景模型,使得长时间停滞物体由背景变成运动前景时,被遮挡的背景显露区被快速恢复。与Stauffer等人提出的方法不同的是,物体运动区不再构建新的高斯分布加入到混合高斯分布模型中,减弱了慢速运动物体对背景的影响。实验结果表明,在有诸多不确定性因素的序列视频中构建的背景有较好的自适应性,能迅速响应实际场景的变化。  相似文献   

16.
随着计算机视觉和摄像设备的日益普及,目标检测技术已经成为一个重要的研究领域。虽然提出了几种目标检测方法,但由于其适用性与局限性,并不能解决实际复杂场景中的各种挑战。针对传统混合高斯模型对动态背景、光照变化和阴影敏感等问题,提出一种混合高斯模型的改进算法,用于视频中目标检测。该方法首先通过传统混合高斯模型获取当前帧目标的粗略区域;通过将双级学习率和组合权重引入混合高斯模型,从而区分出运动区域与包含动态背景的背景区域;然后进一步利用基于颜色特性与空间连续性的方法去除阴影;最后通过形态学处理提取出准确的运动目标区域。对比实验表明,所提方法不仅能够有效去除动态背景,而且能够有效抑制阴影和光照变化的影响。  相似文献   

17.
基于记忆的混合高斯背景建模   总被引:1,自引:0,他引:1       下载免费PDF全文
齐玉娟  王延江  李永平 《自动化学报》2010,36(11):1520-1526
混合高斯模型(Gaussian mixture model, GMM)可对存在渐变及重复性运动的场景进行建模, 被认为是最好的背景模型之一. 然而, 它不能解决场景中存在的突变, 如门的打开/关闭等. 为解决此类问题, 受人类认知环境方式的启发, 本文将人类记忆机制引入到背景建模, 提出一种基于记忆的混合高斯模型(Memory-based GMM, MGMM). 每个像素都要经过瞬时记忆、短时记忆和长时记忆三个空间的传输和处理. 本文提出的基于记忆的背景模型能够记住曾经出现的背景, 从而能更快地适应场景的变化.  相似文献   

18.
高斯混合模型已经成为对视频利用背景减除法进行运动目标检测的最多的一种背景建模模型,也成为一种标准模型。首先对高斯混合模型的理论框架进行了分析,然后采用OpenCV技术实现高斯混合模型来检测视频运动目标,实验结果表明高斯混合模型对摄像头静止的道路监控视频运动目标检测具有较好的效果。最后以该运动目标检测技术为基础设计了一种智能视频监控系统,该系统具有较好的实用性。  相似文献   

19.
一种改进的复杂场景运动目标检测算法   总被引:3,自引:2,他引:1  
提出了一种复杂场景视频序列中运动目标精确检测及提取的改进算法,该算法首先采用混合高斯模型(简称GMM)对背景及前景建模快速地实现前景运动区域提取,然后结合目标帧间相关性和随机噪声帧间无关的特点采用时间滤波(Tem-poral Filter)法和数学形态学进行后处理.实验结果表明本文所采用的改进算法能准确的提取运动目标滤除动态噪声,提高了检测鲁棒性,对复杂干扰场景下的实时运动目标检测得到了较令人满意的效果.  相似文献   

20.
介绍了在混合高斯模型的基础上,采用每一个像素点及其邻域组成的集合作为特征矢量来描述图像,对YUV格式的彩色图像的不同颜色分量分别建立混合高斯模型,从而确定是否有变化发生.为充分利用空间信息,提出将彩色图像分割与背景建模结合起来,得到具有精确边缘的运动目标.实验结果表明,即使在前景纹理、颜色比较一致且与背景对比不是很明显的情况下,本方法也能完整地检测出运动前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号