首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
SBR工艺硝化脱氮过程研究   总被引:2,自引:0,他引:2  
SBR法脱氮,硝化过程中碳氮比和温度对氨态、硝态、亚硝态氮的平衡和转化关系极其重要.人工配制固定浓度碳源、不同浓度水平氨氮废水的SBR工艺硝化实验表明:氨氮降解明显地分为两个阶段;进水氨氮浓度越高,氨氮自养硝化阶段降解速率越快,亚硝酸盐氮生成速率也越快.对不同温度硝化过程中亚硝酸盐氮进行研究,结果表明,在中温(20~30℃)下,通过调整pH值,亚硝酸盐氮不仅可以实现累积,而且温度越高,亚硝酸盐氮累积速率越快.  相似文献   

2.
为了探讨碳氮比(ρ(C)/ρ(N))在反硝化过程中对于亚氮积累的影响,采用乙酸钠为碳源,在序批式实验中,通过控制进水碳氮比来研究反硝化包埋颗粒在反应过程中亚硝态氮积累的现象.实验结果表明:在反应过程中,不同的碳氮比条件下均出现亚硝态氮积累现象,且亚硝态氮积累率都表现出先升高后降低的趋势.其中,碳源充足(碳氮比为4.0~6.0)时,亚硝态氮积累率在30 min时达到最大,随后逐渐降低,反应结束时在碳氮比为4.0条件下仍有亚氮积累;当碳源不足(碳氮比为2.0~3.0)时,亚硝态氮的积累率在120 min达到最大,而后基本维持不变,说明可以通过控制碳氮比和反应时间来获得稳定的亚硝态氮积累.硝态氮和亚硝态氮的还原速率随着碳氮比的增加而逐步升高,而亚硝态氮的最大积累率与积累速率随着碳氮比的增加先升高后降低,在碳氮比为4.0时亚硝态氮的积累率和积累速率均达到最大,分别为40.8%和24.46 mg/(L·h),说明碳氮比对亚硝态氮的积累有显著影响.  相似文献   

3.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

4.
晚期垃圾渗滤液实现短程硝化影响因素分析   总被引:6,自引:1,他引:6  
利用SBR反应器,探讨了溶解氧(DO)、温度和pH值对晚期垃圾渗滤液实现短程硝化的影响.结果表明:DO质量浓度为0.75 mg/L左右时,短程硝化效率较高,大于该值时硝化类型有向全程硝化转变的趋势,低于该值时最大氨氧化速率下降较大;当DO质量浓度保持在0.75 mg/L左右时,降低温度和pH值,最大氨氧化速率下降,但亚硝氮积累率仍保持在较高水平.低溶解氧情况下,由于DO的抑制作用,硝酸菌没有表现出较亚硝酸菌更适应较低温度或pH值环境的特性,DO是实现晚期垃圾渗滤液短程硝化的控制因素.当DO为0.75 mg/L左右,pH值为6.5~8.0,温度为25~27℃时,可以达到96%以上的氨氮去除率及98%以上的亚硝氮积累率,在此条件下最大氨氧化速率为0.097~0.12 g/(gVss.d).  相似文献   

5.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

6.
SBR工艺处理高质量浓度尿素废水短程硝化特性   总被引:1,自引:0,他引:1  
为实现短程脱氮技术处理高质量浓度尿素废水,通过采用SBR工艺考察反应过程中pH、曝气时间、尿素容积负荷对高质量浓度尿素废水短程硝化特性的影响.结果表明:用SBR工艺处理高质量浓度尿素废水效果稳定,出水中含有大量的亚硝酸氮,发生了短程硝化;当pH在7~10的范围内时,亚硝酸盐积累率均在90%以上;在试验条件下,曝气时间对短程硝化过程影响不大,尿素水解反应成为限速步骤;尿素容积负荷没有影响亚硝酸盐氮的积累率,当进水尿素容积负荷控制在1.13 kg/(m3.d)以下时,能够获得较高的尿素去除率和氨氮转化率.高浓度尿素废水处理中短程硝化脱氮过程更容易实现.  相似文献   

7.
对亚硝化颗粒污泥系统在启动和运行过程中氮的损失特性进行了考察.结果表明,当进水氨氮容积负荷为1.2 kg/(m3·d)时,系统氮损失率保持在20%左右,而且在第45~58天期间氮损失率有上升趋势.分析认为氮的损失主要归因于发生在颗粒污泥内部的反硝化过程,而氨氮吹脱、厌氧氨氧化等对其贡献微弱.随着颗粒污泥粒径的逐渐增长和结构的愈加密实,反硝化效果不断增强.另外,亚硝化颗粒污泥系统具有良好的COD去除效果,COD容积负荷为2.4 kg/(m3·d)时,COD去除率稳定在70%左右.COD好氧降解量的减少被增强的缺氧降解过程(反硝化)所弥补.  相似文献   

8.
氨氮对内循环生物流化床亚硝化过程影响   总被引:2,自引:0,他引:2  
为实现内循环生物流化床(ITFB)短程脱氮处理高氨氮废水,在小试ITFB反应器内考察了氨氮浓度对生物膜亚硝化特性的影响.通过5个月的连续试验,研究了ITFB反应器历经启动培养、短暂亚硝化、硝化系统破坏、硝化系统恢复、完全硝化五个过程中,氨氮、硝酸盐氮和亚硝酸盐氮的转化规律及游离氨毒性作用对短程硝化过程的影响.试验结果表明:反应器启动初期出现了短暂亚硝化,平均亚硝化率为79%;在进水氨氮浓度增加到300 mg/L时,系统再次实现了亚硝化,平均亚硝化率达81%,但由于游离氨浓度的影响使得系统硝化能力受到严重影响,系统氨氮去除率降低至22%;系统恢复后,亚硝化现象不明显.反应器内游离氨浓度随进水氨氮浓度升高而增加至8 mg/L时,系统内硝化细菌和亚硝化细菌活性均受到抑制.通过提高进水氨氮浓度来实现系统短程脱氮过程稳定运行的可逆性较差.  相似文献   

9.
碳源对晚期垃圾渗滤液短程硝化的影响   总被引:1,自引:0,他引:1  
为了考察碳源对晚期垃圾渗滤液短程硝化的影响,采用"两级UASB-缺氧-好氧系统"处理城市生活垃圾晚期渗滤液.系统进水COD质量浓度为4.3g/L左右,进水氨氮质量浓度为2.8 g/L,故COD与氨氮质量浓度之比很低,为1.5左右.首先在UASB1中实现同时反硝化与产甲烷反应,一部分COD在UASB2中进一步去除,在A/O反应器中利用残余COD进行反硝化以及NH_4~+-N的彻底硝化.试验结果表明,未投外加碳源时,原水中可降解COD几乎全部作为一级UASB的反硝化碳源被利用,A/O池缺氧段反硝化碳源不足.在A/O池的A段投加相当于1 g/L COD质量浓度的无水乙酸钠作为电子供体促进反硝化后,由于反硝化产生大量的碱度,补充了硝化所消耗的碱度,使pH值维持在一个比较合适的范围,可实现稳定的短程硝化,亚硝态氮累积率由未投加碳源时的20%提高到87%,系统出水氨氮质量浓度为0.01 g/L左右,氨氮的去除率也由未投加碳源时的92%提高到99.6%.  相似文献   

10.
针对垃圾渗滤液中高浓度氨氮的问题,以间歇进水生物反应器为对象,研究了短程硝化反应中氨氮与COD降解动力学及功能微生物组成结构.结果表明:在pH=6.5~8.5时,氨氮降解符合米氏模型,而COD降解适用于抑制Aiba动力学模型.随pH增加,氨氮和COD的最大降解速率与饱和常数均先增加后降低,pH=7.5时达到最大值.这说明短程硝化反应中,氨氮与COD的降解受pH影响较大,最佳pH应该控制在7.5~8.0.此外,研究发现,短程硝化过程中COD的降解速率和最大降解速率分别是氨氮的5.6~11.3倍和12.4~16.8倍,这可能是由于实验进水中含有较高浓度的有机物,导致生物系统中异养菌生长代谢较快.最后,间歇进水生物反应器微生物中3种AOB菌群Nitrosomonas europaea ATCC19178、Nitrosomonas stercoris和Nitrosospira sp.PM2占总硝化菌群比例达66%,是短程硝化生物系统中的优势菌群.  相似文献   

11.
为实现废水处理过程中的短程硝化及反硝化脱氮中亚硝酸盐的积累以控制硝化反应的类型,以试验的方式,采用SBR工艺研究了pH值对不含海水的城市生活污水和含30%海水的城市生活污水短程硝化的影响.试验结果表明:对于不含海水的城市生活污水,单纯提高pH值来提高游离氨浓度并不一定能够实现短程硝化;对于含30%海水的城市生活污水,可直接实现短程硝化;海水盐度是实现短程硝化的影响因素之一.  相似文献   

12.
以2种强化生物除磷(EBPR)系统中的活性污泥为研究对象,考察亚硝酸盐对聚磷菌厌氧代谢的影响,结果表明:不同EBPR系统中的聚磷菌对于亚硝酸盐的耐受能力不同.人工配水富集聚磷菌的活性污泥,当亚硝态氮浓度超过10 mg/L时,聚磷菌吸收VFA受到抑制,PHA的合成减少,磷酸盐的释放增加;处理生活污水的SBR短程脱氮除磷活性污泥,亚硝酸盐的浓度高达30 mg/L时,未对聚磷菌的厌氧代谢造成抑制,但引起异养反硝化菌与聚磷菌竞争VFA,导致PHA合成量和释磷量的减少.富集聚磷菌的活性污泥投加亚硝酸盐后P/VFA增大,说明有亚硝酸盐存在时更多的能量用于VFA的吸收.对2种活性污泥中聚磷菌的荧光原位杂交(FISH)定量分析表明:富集聚磷菌系统中聚磷菌含量达到55%,而短程脱氮除磷系统中为7.6%.  相似文献   

13.
通过改变反应器曝气量、氨氮浓度与适时排泥可缩短自养短程硝化时间.利用微电极监测技术,测定反应器内好氧活性污泥絮体微观环境物质浓度变化规律.结果表明,逐步降低曝气量、增加氨氮浓度和适时排泥可以提高系统的NO-2-N积累浓度:在NH+4-N浓度由200 mgN/L提高到400 mgN/L,曝气量由35 L/H降到25 L/H,污泥浓度稳定在2 100~2 400 mg/L,历时23 dNO-2-N积累率由3.4%提高到91.86%.经过三个阶段,实现了全程硝化到短程硝化的转换过程;通过对污泥基团物质迁移转化的微生态监测发现,NO-2-N生成过程主要在污泥基团0~500μm内进行.试验条件下絮体内NO-2-N总产量从1.48μmol(cm2.h)-1增加到3.8μmol(cm2.h)-1,NO-3-N总产量从2.6μmol(cm2.h)-1降低到0.95μmol(cm2.h)-1;随着曝气量降低和氨氮浓度的提升,NO-2-N生成区域向污泥絮体表面迁移,亚硝氮氧化区域主要存在于氨氮氧化区域絮体更深处部位.测试发现物质在污泥界面迁移过程中明显衰减,表明污泥结构过于密实会影响物质迁移和净化效率.  相似文献   

14.
不同pH值及碱性物质对短程硝化的影响   总被引:2,自引:0,他引:2  
为了探究污水生物处理短程硝化过程中最佳pH值范围及适宜的碱性物质,采用序批式活性污泥法(SBR)研究模拟污水不同pH值及碱性物质对短程硝化的影响.结果表明,短程硝化反应的最适pH值为8.0,当pH值低于6.6时,短程硝化反应几乎停止.调节反应器初始pH值为8.0时,添加氢氧化物和碳酸类物质的反应器因pH值下降速度快而先后停止反应.KHCO3的酸碱缓冲能力最强,pH值降低最慢,短程硝化速率最快,平均亚硝积累速率达0.155 g/(g·d)(以可挥发性固体计算).通过添加不同碱性物质维持反应过程恒定pH=8.0时,KHCO3调节的反应器反应速率最快,最适合短程硝化反应.因此,在工程应用中,从可行高效等方面考虑,建议选择用KHCO3调节至pH=8.0促进短程硝化反应的进行.  相似文献   

15.
化学物质对硝化细菌的选择性抑制   总被引:1,自引:0,他引:1  
针对硝化反应中2类细菌对环境的敏感程度不同,可由此使硝化反应第2步受到抑制,产生亚硝酸盐的积聚,即短程硝化反应;将引起亚硝酸盐积聚的原因分为2种,相应地将化学物质对生物硝化反应的抑制作用分为2类,将这些可产生选择性抑制作用的化学物质进一步分为无机氮化合物、毒性物质和杀菌类物质.综合分析已有的研究结果,着重讨论了消毒剂作为选择性抑制剂的可行性.从安全性、投加剂量及投加频次等角度分析,认为消毒剂作为选择性抑制剂有很好的应用前景.  相似文献   

16.
高浓度氨氮废水自养半短程硝化试验   总被引:1,自引:0,他引:1  
在SBR反应器中采用消化污泥驯化启动自养半短程硝化系统。在温度35±1℃,溶解氧浓度(DO)1.0~1.5mg/L的条件下,可实现反应器的短程硝化。试验结果表明:反应器进水NH3-N浓度为510mg/L、HRT=12h、DO=0.8~1.2mg/L、pH=7.5~8.3时,SBR反应器出水NO2^--N和NH3-N的平均浓度分别为253.7和246.9mg/L,P(NO2^--N)/p(NH3-N)为1.02,满足ANAMMOX反应器的进水要求。  相似文献   

17.
短程硝化-反硝化技术经济特性分析   总被引:11,自引:0,他引:11  
在试验的基础上,从曝气量、外加碳源量、反应器容积等方面对短程硝化-反硝化工艺的优点进行了分析讨论,结果证明短程硝化-反硝化是一种高效、节能的工艺,对现有的生物脱氮工艺的改造有重要的实用价值。  相似文献   

18.
曝气生物滤池的微生物种群优化与分布   总被引:4,自引:0,他引:4  
为研究反应器内的微生物种群关系,以强化污水脱N处理,本试验采用上流式曝气生物滤池,以生活污水为原水,在水力负荷、pH值以及溶解氧(DO)方面对微生物进行生化反应和结构优化的影响情况进行了研究.试验结果表明,污染物负荷对2级滤池的种群竞争具有重要作用,适当地控制负荷可使反应器在各自的优化状态下运行.pH<8.5对维持长时间短程硝化可行性不大,但是控制ρ(DO)<1.8 mg/L,在一定负荷时,利用在较低的ρ(DO)条件下氨氧化菌的比增殖速率比亚硝酸盐氧化菌的比增殖速率高的特点,亚硝酸盐积累率可以达到 84%,有利于短程硝化反硝化反应器的工艺设计.  相似文献   

19.
目的研究在短程硝化实现过程中,曝气频率、pH值、DO质量浓度对NO2--N积累的影响.方法以实际生活污水为试验水样,利用N—SBR系统内培养驯化的亚硝化细菌,在间歇曝气条件下,通过控制不同曝气频率、pH值、DO质量浓度,采用静态试验的方式进行短程硝化试验.结果在一定范围内曝气频率越短越有利于亚硝化细菌的生长,在pH值为7.5—8.0时可以实现短程硝化反应;当曝气频率为曝气15min/停曝15min、DO质量浓度为1mg/L时NO2-N积累率最高达到了94.34%.结论间歇曝气方式可以在较短的时间内完成亚硝化细菌的培养驯化,有效地实现短程硝化,减少了能源和碱度的消耗,是一种经济可行的方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号