首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Damage-induced alkaloids in tobacco: Pot-bound plants are not inducible   总被引:3,自引:0,他引:3  
Field-grown wild tobacco plants (Nicotiana sylvestris) were subjected to a defoliation regime designed to mimic the rate and amount of leaf mass removed by one tobacco hornworm per plant. Undamaged leaves on these plants undergo a dramatic (457% for leaf position 5, 410% for leaf position 8) increase in total leaf alkaloids compared to same-age and positioned control leaves on undamaged control plants. However, potted greenhouse-grown plants fail to exhibit the same damage-induced increase in alkaloid content. The greenhouse environment differs from the field environment in factors known to influence leaf alkaloid content, particularly soil N, P, K, near-UV radiation, and relative humidity. However, altering these environmental factors does not make potted plants able to increase their leaf alkaloid levels in response to defoliation. Transplanting plants into larger pots with more soil does allow the plants to respond to defoliation. Thirty days after transplanting, the plants are again unresponsive to damage, probably as a result of becoming pot-bound. This result suggests a mechanism for the induction response, specifically that leaf damage triggers synthesis of these alkaloids in the roots, and offers a potentially valuable experimental tool for the study of induced-plant defenses in tobacco and other plants that synthesize alkaloids in their root tissues.  相似文献   

2.
The larvae of Perileucoptera coffeella, a leaf miner, is one of the main pests attacking coffee plantations. Caffeine is the major alkaloid in this crop and may have a role in insect resistance. Since there is genetic variability in both resistance to the coffee leaf miner and in caffeine content among different coffee species, we investigated the role of this alkaloid as an antiherbivory compound. Coffee plants containing different levels of caffeine were exposed to oviposition of the insect, and the caffeine content and damaged leaf area were evaluated. The same procedure was carried out with interspecific hybrids between C. arabica and C. racemosa, varying in resistance against the leaf miner. In addition, plants were exposed to the insect, but one leaf of each pair was protected from oviposition with paper bags. In another experiment, leaf disks from plants with known susceptibility to attack by the leaf miner were infiltrated with 0–2% aqueous caffeine solutions and exposed to oviposition. When one leaf of a pair was protected from the insect, there was an increase in caffeine in the infested leaves, particularly in younger leaves. None of the experiments established a significant correlation between reduction of leaf damage and caffeine content of the tissue. The results indicate that P. coffeella is well adapted to coffee, and it has evolved a mechanism to tolerate the potentially toxic effects of caffeine.  相似文献   

3.
Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or “primed”) after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.  相似文献   

4.
We used N2-fixing and nonfixing lupines to examine the effects of plant nutrition on short-term alkaloid production in damaged leaves. Three different treatments were used: damaged leaves from N2-fixing plants; undamaged leaves from these damaged, N2-fixing plants; and damaged leaves on nitrogen-limited, nonfixing plants. Relative to controls, alkaloids increased in concentration more quickly in the N2-fixing than in the nitrogen-limited plants. The magnitude of this increase in alkaloids was correlated with the initial alkaloid concentration. These results suggest that nitrogen-rich plants may benefit from faster and higher alkaloid induction than nitrogen-limited plants. In addition, the detailed dynamics of individual alkaloids are consistent with earlier proposals for the mechanism of lupine alkaloid induction.  相似文献   

5.
We performed field tests of alkaloid induction inNicotiana attenuata plants growing in southwestern Utah with mimicry of the two major types of damage inflicted by invertebrate and vertebrate herbivores: leaf damage and stalk removal, respectively. In undamaged plants, seasonal increases in leaf nicotine content occurred at a rate of 0.046% leaf dry mass/day. Leaf damage doubled the accumulation rate to 0.086–0.138% leaf dry mass/day, while stalk removal resulted in a quadrupling of the accumulation rate to 0.206% leaf dry mass/day. These damage-induced increases in nicotine accumulation are significantly larger than between-plant and phenological variations. Leaf damage to the nornicotine-(N. repanda andN. trigonophylla) and anabasine-accumulating (N. glauca)Nicotiana species native to North America resulted in 1.5- to 5-fold increases in their principal leaf alkaloid pools. We conclude that alkaloid induction is not limited to nicotine-accumulatingNicotiana species and that herbivores feeding on previously damaged plants are likely to encounter tissues with alkaloid titers significantly higher than those of undamaged plants.  相似文献   

6.
Salix sericea (Marsh.) (Salicaceae) seedlings were used to investigate phytochemical induction of phenolic glycosides following beetle herbivory. Seven-week-old full-sibling seedlings were subjected to one of three damage treatments: Plagiodera versicolora adults, P. versicolora larvae, or Calligrapha multipunctata bigsbyana adults. Salicylate concentrations were measured locally (within damaged leaves) and systemically (above and below damaged leaves) 4 d later. Herbivory caused differential salicylate induction; 2′-cinnamoylsalicortin was induced, whereas salicortin was not. The induction of 2′-cinnamoylsalicortin was not specific with regard to the species or developmental stage of beetle tested but did vary with leaf age: induction occurred in the younger undamaged leaves but not in the damaged leaves or in the older undamaged leaves. The amount of leaf area consumed had no detectable effect on induction, indicating an “all-or-none” response triggered by even small amounts of herbivory. Locally, herbivory caused a decrease in salicortin concentrations, probably because of degradation within the damaged leaves. These results suggest a specific but generalized induced response to these leaf-feeding beetles.  相似文献   

7.
Pigment glands in cotton contain terpenoid aldehydes that are toxic and deterrent to feeding of several generalist lepidopteran insects. We hypothesized that previously observed systemically induced feeding deterrence may be associated with pigment glands. We conducted experiments to determine the dynamics and chemical nature of inducible feeding deterrents in leaves of cotton, Gossypium hirsutum L, to larvae of the beet armyworm, Spodoptera exigua. Production and/or filling of pigment glands was influenced by physiological age of Deltapine 90 cotton plants. In undamaged plants, successively formed leaves contained more pigment glands, up to the seventh or eighth true-leaf developmental stage. Feeding choice tests conducted one or seven days after initial feeding damage revealed that third instars of S. exigua consumed more of the two youngest leaves from control cotton plants than from plants whose two oldest leaves had been fed on previously for 24 hr by S. exigua. The preference for leaves from control plants was significant one day after initial damage and highly significant seven days after damage. Consumption of mature foliage (leaf immediately above initially damaged leaves) from control plants and damaged plants did not differ. More pigment glands were counted on the youngest leaf of damaged plants than on the youngest leaf of control plants one day after initial damage. HPLC analysis revealed greater amounts of hemigossypolone, heliocides 1 and 2 (H1 and H2), and total terpenoid aldehydes per gland in young foliage of damaged plants than control plants one day after initial injury. By seven days after initial injury, greater quantities of hemigossypolone and all heliocides except H4 were detected in young foliage from damaged plants compared to control plants. Concentrations of H1 per gland in young leaves from damaged plants increased the most of all terpenoid aldehydes measured (3.4× the amount found in leaves from control plants). Mature leaves from damaged plants did not contain more terpenoid aldehydes than mature leaves from control plants. We suggest that systemically induced feeding deterrence to S. exigua in young leaves of glanded cotton was due to increased amounts of terpenoid aldehydes in pigment glands.  相似文献   

8.
Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a damage signal that dramatically increasesde novo nicotine synthesis in the roots. The increased synthesis leads to increases in whole-plant nicotine pools, which in turn make plants more resistant to further herbivore attack. Because signal production and the response to the signal occur in widely separated tissues, the speed with which different damage signals exit a damaged leaf can be studied. We propose that electrical damage signals should exit a leaf faster (less than 60 min) than chemical damage signals. Excision of a leaf induces a smaller increase in nicotine production than does puncture damage, so we examined our proposition by excising previously punctured leaves at 1, 60, and 960 min after leaf puncture and quantifying the induced whole-plant nicotine pools six days later when the induced nicotine production had reached a maximum. Significant induced nicotine production occurred only if punctured leaves were excised more than 1 hr after puncture, which is consistent with the characteristics of a slow-moving chemical signal rather than a fast-moving electrical signal. We explore the nature of the chemical signal and demonstrate that additions of 90µg or more of methyl jasmonate (MJ) in an aqueous solution to the roots of hydroponically grown plants inducede novo nicotine synthesis from15NO3 in a manner similar to that induced by leaf damage. We examine the hypothesis that jasmonic acid (JA) functions in the transfer of the damage signal from shoot to root. Using GC-MS techniques to quantify whole-plant JA pools, we demonstrate that leaf damage rapidly (<0.5 hr) increases shoot JA pools and, more slowly (<2 hr), root JA pools. JA levels subsequently decay to levels found in undamaged plants within 24 hr and 10 hr for shoots and roots, respectively. The addition of sufficient quantities (186µg) of MJ in a lanolin paste to leaves from hydroponically grown plants significantly increased endogenous root JA pools and increasedde novo nicotine synthesis in these plants. However, the addition of 93µg or less of MJ did not significantly increase endogenous root JA pools and did not significantly affectde novo nicotine synthesis. We propose that wounding increases shoot JA pools, which either directly through transport or indirectly through a systemin-like signal increase root JA pools, which, in turn, stimulate root nicotine synthesis and increase whole-plant nicotine pools.  相似文献   

9.
Studies on induced defenses have predominantly focused on foliar induction by above-ground herbivores and pathogens. However, roots are attacked by as many if not more phytophages than shoots, so in reality plants are exposed to above- and below-ground attack. Here, we report effects of foliar and/or root damage on terpenoid aldehyde accumulation in cotton (Gossypium herbaceum). Using HPLC, we analyzed concentrations of individual terpenoid aldehydes in foliage and root tissue. In undamaged plants, terpenoid aldehydes were concentrated in young immature main leaves. Concentrations in side leaves, branching from the main leaves, did not differ among leaf position. Above-ground feeding by Spodopterta exigua larvae on a mature leaf enhanced terpenoid concentrations in immature leaves but not in the damaged leaf. In particular, concentrations of hemigossypolone and the heliocides 1 and 4 were enhanced following herbivory. Root herbivory by wireworms (Agriotes lineatus) also resulted in an increase in terpenoid levels in the foliage. In contrast with foliar herbivory, both immature and mature leaves were induced. However, the level of induction after root herbivory was much lower compared to foliar herbivory. Plants exposed to root herbivory also had significantly higher levels of terpenoid aldehydes in root tissue, while no such effect was found following foliar herbivory. Plants exposed to both root and foliar herbivory appeared to induce primarily above-ground at the cost of below-ground defense. The implications for above- and below-ground Mutitrophic interactions are discussed.  相似文献   

10.
Although little is known about the patterns of chemical defense allocation in reproductive tissues, optimal defense theory predicts a high constitutive allocation due to the tissues' high fitness value. To examine this prediction, we quantified the short- and long-term changes in the nicotine pools of reproductive tissues in response to both floral and leaf damage. Recently opened flowers (stage 5 capsules) do not alter their nicotine pools within a day in response to herbivory byManduca sexta larvae or mechanical damage to the corolla. Similarly, leaf damage during both vegetative and reproductive growth does not influence the nicotine pools of the first three stage-5 capsules produced. However, the nicotine pools of capsules produced later in reproductive growth were significantly larger (1.2- to 1.9-fold) on plants with leaf damage. These differences in floral nicotine pools were a result of both increases in nicotine pools of capsules on damaged plants and decreases in the nicotine pools of capsules on undamaged plants during reproductive growth. Leaf damage did not affect the rate of capsule maturation or the mass of stage-5 capsules at any time during reproductive growth. An allometric analysis of nicotine pools and biomass of reproductive parts in all stages of development from damaged and undamaged plants demonstrates that damaged plants allocated a significantly larger quantity of nicotine to reproductive parts in all stages of development than did undamaged plants. Given that nicotine is thought to be synthesized in the roots and transported to leaves and reproductive parts, nicotine could be allocated to reproductive parts in proportion to the number of developing capsules on a plant. We excised the first 27 stage-5 capsules on plants with and without leaf damage, with the expectation that plants with fewer capsules would allocate a larger amount of nicotine to the remaining capsules. In contrast to the prediction of this passive allocation model, floral excision did not affect nicotine pools on plants with or without leaf damage. These results demonstrate that the allocation of nicotine to reproductive parts is more strongly influenced by damage to vegetative rather than reproductive tissues. Reproductive parts are constitutively defended over the short term, but the set points for defense allocation are apparently increased by damage to vegetative tissues during reproductive growth. The decrease in allocation of nicotine to reproductive parts in undamaged plants during reproductive growth suggests an optimization of resource allocation as plants realize their potential fitness.  相似文献   

11.
Systemic induction following damage has been found in many plant species. Despite this widespread appreciation for the importance of induction, few studies have characterized the spatial variability of induction. We used tomato, Lycopersicon esculentum, to examine how damage to a single leaf affected the spatial distribution of systemic induction of proteinase inhibition in leaves above the damaged leaf. We crushed each leaflet of the second true leaf with forceps and measured the spatial distribution of proteinase inhibition in leaves 3, 4, and 5 at 8, 16, 24, 48, 72, and 120 hr. Constitutive levels of proteinase inhibitor activity were quantified in undamaged plants. We hypothesized that, due to vascular control of signal movement, systemic induction would show both among and within leaf variability. Following damage to leaf 2, induction was most pronounced in leaf 5 and minimal in leaf 3. In general, proteinase inhibitor activity was greatest at 24 hr and then declined. As predicted by vascular architecture, the near side of leaves in adjacent orthostichies showed higher induction than the far side of leaves. There was no increase in proteinase inhibitor activity in the undamaged neighboring plants. Overall our results demonstrate that systemic induction of proteinase inhibitors is partially controlled by vascular architecture and that future studies on systemic induction should examine the vascular architecture of the plants being studied. We argue that this spatial variation may influence the performance of herbivores sensitive to induced chemical changes.  相似文献   

12.
YoungCinchona ledgeriana plants contain two types of alkaloid: indole alkaloids in the leaves and quinoline alkaloids in the root. FromCinchona leaves, a crude alkaloid extract was made, containing the cinchophylline type of indole alkaloids and a small amount of 5-methoxytryptamine. The leaf alkaloid extract exerted a strong detrimental effect on the growth of larvae of the polyphagous beet armyworm,Spodoptera exigua (Lepidoptera). Feeding of larvae on an artificial diet containing the leaf alkaloids at the same concentrations as those found in the plant resulted in significant growth reduction, retardation in development, and mortality of the larvae. Cinchophyllines are composed of 5-methoxytryptamine coupled to a corynantheal unit. When incorporated into the artificial diet, 5-methoxytryptamine alone had no effect on the 5.exigua larvae. Corynantheal, however, had a strong detrimental effect on growth of the larvae, its effect being comparable to that of the leaf alkaloid extract. In contrast to the indole-type leaf alkaloids, the quinolinetypeCinchona root alkaloids did not affect growth and development of the larvae. These results suggest that the indole-type alkaloids, which inCinchona plants are present at the highest concentrations in the young, vulnerable leaflets, are involved in the chemical defense of the plant against herbivorous insects.  相似文献   

13.
The Japanese beetle is a polyphagous insect that typically aggregates on preferred host plants in the field. We studied the response of Japanese beetles to artificial damage, fresh feeding damage, and overnight feeding damage to test the hypothesis that beetles are attracted to feeding-induced volatiles. Crabapple leaves that had been damaged overnight by Japanese beetles or fall webworms attracted significantly more Japanese beetles than did undamaged leaves. Artificially damaged leaves or leaves freshly damaged by Japanese beetles, however, were not significantly more attractive than undamaged leaves. Leaves that had been damaged overnight by Japanese beetles or fall webworms produced a complex mixture of aliphatic compounds, phenylpropanoid-derived compounds, and terpenoids. In comparison, artificially damaged leaves or leaves with fresh Japanese beetle feeding damage generated a less complex blend of volatiles, mainly consisting of green-leaf odors. Feeding-induced odors may facilitate host location and/or mate finding by the Japanese beetle.  相似文献   

14.
Tall larkspur (Delphinium barbeyi) is a serious poisonous plant threat to cattle on mountain rangelands. The larkspur mirid [Hopplomachus affiguratus] has been proposed as a biological tool to damage tall larkspur in an effort to deter grazing by cattle and thus prevent poisoning. Preliminary data suggested that it may also reduce toxic alkaloid levels. The objective of this study was to determine if damage caused by the larkspur mirid would reduce toxic alkaloid concentration. Larkspur mirids were collected in the field in 1992 and placed on potted plants in the greenhouse. The resulting mirid-damaged leaves were lower in toxic alkaloids than leaves from uninfested plants. In the 1995 field study, toxic and total norditerpenoid alkaloid concentrations were measured in two larkspur populations having established mirid populations and in two newly infested larkspur populations. In the 1996 field study, three widely separated larkspur populations infested with mirids were sampled. Mirid-damaged leaves were lower in toxic alkaloids in both years, but there were no differences in flowering heads. However, only at Yampa, Colorado, did mirids reduce toxic alkaloids to levels that would not pose a threat to cattle. There was no difference in toxic or total alkaloid concentration between larkspur populations with long-term mirid infestations compared to newly infested plants. The plant-to-plant variability in alkaloid concentration was greater than differences due to mirids.  相似文献   

15.
Damage by larvae of the buckeye butterfly (Junonia coenia) resulted in removal of 15–25% of Plantago lanceolata leaf area. Plants grown under high nutrients were larger than those grown under low nutrients. Twenty-eight days after herbivory, plants grown under high nutrients were still larger than those grown under low nutrients, and plants exposed to herbivores were significantly smaller than those not exposed to herbivores, regardless of the nutrient treatment. Damage by larvae also increased the iridoid glycoside content in the leaves and reproductive tissues of these Plantago lanceolata relative to undamaged controls. Whether damaged or undamaged, the iridoid glycoside content of P. lanceolata was highest in the reproductive tissues and lowest in the roots. Although initial concentrations of iridoid glycosides were significantly higher in plants grown under low nutrient conditions than in plants grown under high nutrient conditions, nutrient availability did not alter the phytochemical response of plants to herbivore damage. These results provide additional support for the defensive role of the iridoid glycosides in Plantago lanceolata by demonstrating that phytochemical variation is not always an incidental effect of nutrient stress but can be a direct response to damage by herbivores.  相似文献   

16.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

17.
Protease inhibitors (PIs) are plant compounds that can inhibit proteases of mammal, insect, or pathogen origin and are frequently induced by mechanical wounding, insect feeding, or pathogen infection. Nicotiana attenuata is a species that induces nicotine, volatiles, and phenolics in response to damage. Here we examine the distribution of PIs in N. attenuata to determine if they are part of the induced response in this species and if this response is ontogenetically constrained. We found that N. attenuata shoot extracts inhibited trypsin (Tryp) and chymotrypsin (Chym) activities, while root extracts inhibited Tryp, Chym, and the bacterial protease subtilisin (Sub). The highest TrypPI levels were found at midday in the source-sink transition leaf, while older or younger leaves contained lower TrypPI levels and did not show significant diurnal fluctuations. Rosette plants, bolting plants, and flowering plants all contained TrypPIs in leaves, stems, and flowers, while seed capsules, seeds, and young seedlings did not contain any PIs. PIs in N. attenuata rosette plants were induced by Manduca sexta larval feeding, methyl jasmonate (MeJA) treatment, wounding, and application of M. sexta oral secretion and regurgitant. The response to MeJA application was stronger and longer lasting than to mechanical wounding. The direction and magnitude of the systemic response to mechanical wounding or larval damage depended on the age of the leaf that was damaged and the frequency of wounding. The systemic signal for TrypPI induction appears to follow source-sink relations in the plant and to be regulated by the octadecanoid pathway. Interestingly, by the time plants reach the flowering stage, they had lost the ability to increase PI levels after MeJA treatment. We concluded that plant ontogeny constrains both constitutive and inducible PI production in N. attenuata.  相似文献   

18.
Nitrogen surplus models for nicotine production induced by leaf damage predict that the observed increase in root nicotine synthesis after leaf damage results from overflow metabolism; reduced nitrogen existing in excess of growth requirements is shunted into nicotine biosynthesis. To test the nitrogen surplus model for induced nicotine production, we measured the concentrations of the majorN-containing metabolites exported from the roots and the nitrate reductase activity (NRA) of roots and shoots in damaged and undamagedNicotiana sylvestris plants. Leaf damage: (1) had no significant effect on root or shoot NRA, (2) increased nicotine export and decreased amino-acid and amide export from the roots of NO3-fertilized plants, and (3) had no significant effect on the export of anyN-containing metabolite from the roots of NH4-fertilized plants. These results are not consistent with the nitrogen surplus model and indicate that leaf damage has a direct influence on root alkaloid metabolism.  相似文献   

19.
Induced changes in primary metabolism are important plant responses to herbivory, providing energy and metabolic precursors for defense compounds. Metabolic shifts also can lead to reallocation of leaf resources to storage tissues, thus increasing a plant’s tolerance. We characterized whole-plant metabolic responses of tomato (Solanum lycopersicum) 24 h after leaf herbivory by two caterpillars (the generalist Helicoverpa zea and the specialist Manduca sexta) by using GC-MS. We measured 56 primary metabolites across the leaves, stems, roots, and apex, comparing herbivore-attacked plants to undamaged plants and mechanically damaged plants. Induced metabolic change, in terms of magnitude and number of individual concentration changes, was stronger in the apex and root tissues than in undamaged leaflets of damaged leaves, indicating rapid and significant whole-plant responses to damage. Helicoverpa zea altered many more metabolites than M. sexta across most tissues, suggesting an enhanced plant response to H. zea herbivory. Helicoverpa zea herbivory strongly affected concentrations of defense-related metabolites (simple phenolics and precursor amino acids), while M. sexta altered metabolites associated with carbon and nitrogen transport. We conclude that herbivory induces many systemic primary metabolic changes in tomato, and that changes often are specific to a single tissue or type of herbivore. The potential implications of primary metabolic changes are discussed in relation to resistance and tolerance.  相似文献   

20.
Plants respond to insect herbivory by producing dynamic changes in an array of defense-related volatile and nonvolatile secondary metabolites. A scaled response relative to herbivory levels and nutrient availability would be adaptive, particularly under nutrient-limited conditions, in minimizing the costs of expressed defensive pathways and synthesis. In this study, we investigated effects of varying nitrogen (N) fertilization (42, 112, 196, and 280 ppm N) on levels of cotton plant (Gossypium hirsutum) phytohormones [jasmonic acid (JA) and salicylic acid (SA)], terpenoid aldehydes (hemigossypolone, heliocides H1, H2, H3, and H4), and volatile production in response to beet armyworm (Spodoptera exigua) herbivory. Additional bioassays assessed parasitoid (Cotesia marginiventris) host-searching success in response to cotton plants grown under various N fertilizer regimes. At low N input (42 ppm N), herbivore damage resulted in significant increases in local leaf tissue concentrations of JA and volatiles and in systemic accumulation of terpenoid aldehydes. However, increased N fertilization of cotton plants suppressed S. exigua-induced plant hormones and led to reduced production of various terpenoid aldehydes in damaged mature leaves and undamaged young leaves. While increased N fertilization significantly diminished herbivore-induced leaf volatile concentrations, the parasitism of S. exigua larvae by the parasitoid C. marginiventris in field cages did not differ among N treatments. This suggests that, despite significant N fertilization effects on herbivore-induced plant defenses, at short range, the parasitoids were unable to differentiate between S. exigua larvae feeding on physiologically different cotton plants that share large constitutive volatile pools releasable when damaged by herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号