首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yaw-Nan Shieh 《Thin solid films》2010,518(24):7464-6939
Nano-crystalline TiO2 thin films were synthesized by using sol-gel and spin-coating techniques on glass substrates for photo-catalytic applications. Prior to deposition, a TiO2 colloidal suspension was synthesized by microwave-induced thermal hydrolysis of the titanium tetrachloride aqueous solution. In this study, the deposited TiO2 coating with a grain size of 13 ± 2 nm was uniform without aggregation. Co ion implantation into the as-calcined TiO2 thin films was conducted with fluences of 1 × 1015-1 × 1016 doses/cm2 at 40 keV. In addition to the emission of TiO2, the photoluminescence study showed the presence of another Co-related optical center at 405 nm in the Co-implanted TiO2 thin films. Due to the strong capability of forming impurity compounds between the energetic cobalt ions and TiO2, the photoluminescence emission and UV-Vis absorption efficiencies were improved.  相似文献   

2.
Nano-scale TiO2 thin films were synthesized by using sol-gel and spin-coating techniques on glass substrates for photo-catalytic applications. The Ti(IV) butoxide-based TiO2 thin films were optimized for transforming into the high-purity crystalline anatase phase when calcined at 500 °C. To further enhance the photo-catalysis sensitivity of TiO2 thin films for use in visible light environments, a metal plasma ion implantation process was implemented to modify the band gap electron configuration of Ti. Various transition metal atoms such as Ni, Cu, V, and Fe were ionized and accelerated at 20 keV to impinge on the surface of TiO2 substrates at a dosage of 5 × 1015 ions/cm2. ESCA analysis confirmed the binding energy shift of Ti by 0.8-1.2 eV, which accounted for the increased effective positive charge of Ti, resulting in more effective electron trapping capability and, thus, the electron-hole pair separation. In addition, the absorption spectroscopy demonstrated that optical absorption in the visible light regime occurred in specimens implanted with transition metal ions, likely due to the formation of extra impurity energy levels within the original TiO2 band gap energy structure. Among all tested implant materials, the band gap energy of TiO2 was effectively reduced by Cu and Fe ion implantation by 0.9-1.0 eV, which was sufficient enough to excite valence electrons over the band gap in visible light environments. The feasibility of the metal-doped TiO2 thin films for effective applications under visible light irradiation was further confirmed by using super-hydrophilicity contact-angle measurement.  相似文献   

3.
TiO2 thin films were deposited on polycarbonate (PC) substrate by ion beam assisted evaporation. The grain size increased with the ion anode voltage and film thickness. The TiO2 thin films had an amorphous structure. Moiré deflectometry was used to measure the nonlinear refractive indices of TiO2 thin films on PC substrates. The nonlinear refractive index was measured to be of the order of 10− 8 cm2 W− 1 and a change in refractive index was of the order of 10− 5. Dense TiO2 films exhibited high linear refractive indices, red-shift of the optical absorbance, and absorbance in the near-IR region.  相似文献   

4.
The ZnSe thin films were deposited onto glass substrates by the spray pyrolysis method using mixed aqueous solutions of ZnCl2 and SeO2 at the substrate temperature 430 °C. These films were implanted with 130 keV nitrogen ions to various doses from 1 × 1016 to 1 × 1017 ions/cm2. We have analysed the properties of the nitrogen ion-implanted ZnSe thin films using X-ray diffraction and optical transmittance spectra. The values of optical bandgap have been determined from the absorption spectra. The bandgap of the N+ doped films decreased from 2.70 eV for undoped film to 2.60 eV for maximum doping probably due to band-tailing, whereas the absorption coefficient values increased with the increase of the implantation dose.  相似文献   

5.
Y.H. Wang  S.J. Peng  R.W. Wang  Y.G. Cheng 《Vacuum》2008,83(2):408-411
Metal nanoparticles synthesized by sequentially ion-implanted Ag and Cu into silica glasses have been studied. The implantation doses (×1016 ions/cm2) were 5Ag, 5Cu and 5Ag/5Cu, respectively. The optical and microstructural properties of the nanoparticles were characterized by optical absorption spectra and transmission electron microscopy (TEM), respectively. Fast nonlinear optical refraction and nonlinear optical absorption coefficients were measured at 1064 nm of wavelength using Z-scan technique. Results in this paper indicate that the nonlinear refractive index for the Ag/Cu implanted system has a higher value compared to single Ag or Cu implantation nanoparticles.  相似文献   

6.
Optical absorption and nonlinear absorption were studied for Ag nanoparticle composite. Negative Ag ion with 60 keV were applied for implanting into amorphous-SiO2 at a flux 3 μA/cm2 to total fluences ranging from 3 × 1016 to 1 × 1017 ions/cm2. Absorption spectra of Ag-implanted amorphous-SiO2 showed a surface plasmon peak resulting from formation of nanoparticles. The strength of the resonance reflected from the local electric field inside the nanoparticle induced by an external electric field. Nonlinear optical constants were evaluated by the z-scan method with a tunable femtosecond laser system. The strength of the nonlinearity also reflected from the local electric field. Nonlinear absorption coefficients exhibit a maximal value of −3.6 × 103 m/GW for Ag:SiO2 at 420 nm (2.95 eV), around the surface plasmon resonance.  相似文献   

7.
The TiOx thin films were prepared by electron beam evaporation using TiO as the starting material. The effect of the annealing temperature on the optical and electrical properties was investigated. The spectra of X-ray photoelectron spectroscopy reveal that Ti in the films mainly exist in the forms of Ti2+ and Ti3+ below 400 °C 24 h annealing. The charge transfer between different titanium ion contribute greatly to the color, absorption, and electrical resistance of the films.  相似文献   

8.
Jin Pan  H. Wang  N. Umeda  H. Amekura 《Vacuum》2008,83(3):641-644
Enhancement of surface plasmon resonance (SPR) in optical absorption has been found on Cu ion-implanted SiO2 substrate modified by micro-indentation and post-annealing. Micro-indentation effects on surface plasmon resonance (SPR) in optical absorption have been studied to control nanoparticle formation in Cu ion-implanted SiO2 substrate. The SiO2 was firstly implanted with 2 MeV Cu2+ ions at an ion flux of 4 μA/cm2, up to a fluence of 6 × 1016 ions/cm2. After the ion implantation, dot-array patterns of micro-indents were made by a micro-Vickers hardness tester, and followed by annealing at 600 °C in vacuum for 1 h. The optical absorption spectra of the indented region and the non-indented flat region were measured and compared with each other. After post-annealing at 600 °C, the indented area showed higher absorbance of SPR at 2.2 eV than that of the flat region annealed under the same annealing conditions. The TEM study shows larger and denser Cu precipitates inside the indentation than those in the flat area. The results indicate that the defects produced by indentation enhance the atomic migration in the plastic zone during thermal relaxation process, resulting in promoting the enhanced precipitation of Cu nanoparticles.  相似文献   

9.
A novel phase has been discovered by dual low-energy ion implantation and high vacuum electron beam annealing. (100) p-type Si was implanted with (a) 20 keV 12C+ ions to the fluence of 6 × 1016 cm−2 and (b) 7 keV Pb+ ions to the fluence of 4 × 1015 cm−2. The 12C ion implantation results in an understoichiometric shallow SiCx layer that intersects with the surface. The implanted Pb ions decorate a shallow subsurface region. High vacuum electron beam annealing at 1000 °C for 15 s using a temperature gradient of 5 °C s−1 leads to the formation of large SiC nanocrystals on the surface with RBS measurements showing Pb has diffused into the deeper region affected by the 12C implantation. In this region, a new crystalline phase has been discovered by XRD measurements.  相似文献   

10.
The effects of nitrogen ion bombardment on TiO2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO2 film increased with irradiation time. The refractive index n of the TiO2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 × 10− 2 to 1.2 × 10− 1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film.  相似文献   

11.
The samples of polycarbonate were implanted to 100 keV Ar+ ions at fluences ranging from 1 × 1015 to 2 × 1016 ions/cm2. The effect of ion implantation on DC conductivity and optical behaviour of this polymer has been investigated. The observed changes have been correlated with the induced structural changes in the implanted layer using Raman spectroscopy. The increase in electrical conductivity, decrease in UV-visible transmission and red shifting of the optical absorption edge may be due to the formation of a three dimensional carbonaceous structure having conjugated double bonds in the near surface layer of polycarbonate as a result of ion implantation. The shift in the conduction mechanism in the implanted layer from ohmic towards SCLC has been observed as a function of implantation dose. The novelty of the present study is to investigate the implantation induced electrical conduction mechanism in the implanted polycarbonate and to comprehend it with induced optical behaviour for its utilization as optically active material with conductive surface in various opto-electronic devices.  相似文献   

12.
R.A.M. Rizk  Z.I. Ali 《Vacuum》2009,83(5):805-715
Ion bombardment is a suitable tool to improve the physical properties of polymers. In the present study, the effect of ion bombardment on the optical properties of low density polyethylene (LDPE)/Ethylene propylene diene monomer (EPDM) blend (LDPE/EPDM) was studied. Polymer samples was bombarded with 130 keV He and 320 keV Ar ions at fluencies levels ranging from 1 × 1013 to 2 × 1016 ions/cm2. The untreated and ion beam bombarded samples were investigated using ultraviolet-visible (UV-Vis) spectrophotometry. The optical band gap (Eg), was decreased from ∼2.9 eV for the pristine sample down to 1.7 eV for the samples bombarded with He and Ar ions at the highest fluences. Change in the optical gap indicates the presence of a gradual phase transition for the polymer blends. Activation energy has been investigated as a function of the ion fluences. With increasing ion fluence, a decrease in both the energy gap and the activation energy was observed. The number of carbon atoms (N) in a formed cluster is determined according to the modified Tauc's equation.  相似文献   

13.
Nitrogen-doped TiO2 was developed to enable photocatalytic reactions using the visible range of the solar spectrum. This work reports on the synthesis, characterisation and kinetic study of interstitial N-doped TiO2 prepared by the sol–gel method using three different types of nitrogen dopants: diethanolamine, triethylamine and urea. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–visible spectroscopy were used to analyse the titania. Different interstitial N-doped TiO2 properties, such as absorption ability in the UV–visible light region, redshift in adsorption edge, good crystallisation and composition ratio of titania structures (anatase and rutile) could be obtained from different nitrogen dopants. Amongst investigated nitrogen precursors, diethanolamine provided the highest visible light absorption ability of interstitial N-doped TiO2 with the smallest energy bandgap and the smallest anatase crystal size, resulting in the highest efficiency in 2-chlorophenol degradation. The photocatalytic activity of all N-doped TiO2 can be arranged in the following order: TiO2/diethanolamine > TiO2/triethylamine > TiO2/urea > un-doped TiO2. The initial rate of 2-chlorophenol degradation using the interstitial N-doped TiO2 with diethanolamine was 0.59 mg/L-min and the kinetic constant was 2.34 × 10−2 min−1 with a half-life of 98 min. In all cases, hydroquinone was detected as a major intermediate in the degradation of 2-chlorophenol.  相似文献   

14.
Amorphous and partially crystalline WO3 thin films were prepared by reactive dual magnetron sputtering and successively implanted by erbium ions with a fluence in the range from 7.7 × 1014 to 5 × 1015 ions/cm2. The electrical and optical properties were studied as a function of the film deposition parameters and the ion fluence. Ion implantation caused a strong decrease of the resistivity, a moderate decrease of the index of refraction and a moderate increase of the extinction coefficient in the visible and near infrared, while the optical band gap remained almost unchanged. These effects could be largely ascribed to ion-induced oxygen deficiency. When annealed in air, the already low resistivities of the implanted samples decreased further up to 70 °C, whereas oxidation, and hence a strong increase of the resistivity, was observed at higher annealing temperatures.  相似文献   

15.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

16.
Cz n-type Si (100) wafers covered with a 220 nm SiO2 layer or a 170 nm Si3N4 layer were singly implanted with 160 keV He ions at a dose of 5 × 1016/cm2 or successively implanted with 160 keV He ions at a dose of 5 × 1016/cm2 and 110 keV H ions at a dose of 1 × 1016/cm2. Surface morphologies together with defect microstructures have been studied by means of several techniques, including optical microscopy, atomic force microscopy, and cross-sectional transmission electron microscopy (XTEM). Only surface blistering has been observed for He and H sequentially implanted SiO2/Si samples after annealing in temperature range up to 1000 °C. However, as for the He and H implanted Si3N4/Si samples, surface features including blistering and the localized exfoliation of both the top Si3N4 layer and the implanted Si layer have been well demonstrated during subsequent annealing. XTEM observations reveal quite different defect morphologies in two kinds of materials under the same implantation and annealing conditions. The possible mechanisms of surface damage in two kinds of materials have been discussed and presented based on the XTEM results.  相似文献   

17.
Nitrogen-doped porous TiO2 layers were fabricated on the titanium substrate by plasma-based ion implantation sequentially using He, O2 or N2 atmospheres. Post implantation annealing at 570 °C generates a mixture of anatase with a small fraction of rutile in the implanted layer. In order to enlarge the specific surface area, a mesoporous surface structure was produced by exposing the helium bubbles at the sub-surface after removing the surface compact layer using argon ion sputtering. Nitrogen doping extends the photoresponse into the visible light region. Moreover, a lower dose of 4 × 1015 N/cm2 induces a stronger visible light absorption. The photodegradation of Rhodamine B solution with visible light sources indicates that the mesopores at the fresh surfaces and nitrogen doping, both individually and in combination, contribute to an apparent increase in the photodegradation rate.  相似文献   

18.
The present study compares structural and optical modifications of bare and silica (SiO2) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni12+ ion beam with fluences 1012 to 1013 ions/cm2. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.  相似文献   

19.
We report, for the first time to our knowledge, the formation of single mode planar waveguide in z-cut YVO4 by 400 keV, 500 keV He ion implantation in fluence of 3 × 1016 ions/cm2 at room temperature or at liquid nitrogen temperature (77 K). We investigated annealing behavior of the guiding mode and near-field image in the waveguide by prism-coupling method and end-face coupling method respectively. We found that the effective refractive index of the TE0 mode was different before and after annealing for the samples implanted at room temperature, while, annealing had nearly no influence on the effective refractive index of the TE0 mode of the samples implanted at liquid nitrogen temperature (77 K). After annealing at 600 K for 1 h, no guiding mode was observed in the sample implanted by 400 keV He ion in fluence of 3 × 1016 ions/cm2 at room temperature. The Rutherford backscattering/channeling technique was used to investigate the damage reduction after annealing treatments. The minimum yield of the implanted, annealed sample was 5.43%. We reconstructed the refractive index profiles in the waveguide under different condition by applying intensity calculation method.  相似文献   

20.
K. Prabakar 《Thin solid films》2010,519(2):894-899
Visible light enhanced nitrogen-sulfur (N-S) doped titanium dioxide (TiO2) thin films were prepared by the sol-gel method using thiourea as a dopant. The physical and chemical properties of the TiO2 thin films were greatly influenced by the amount of thiourea added to the sol-gel solution. The greatest shift to longer wavelengths for visible light absorption was observed with 0.6 g of thiourea in the precursor solution, while 0.4 g yielded the largest particle sizes. These single-cycle dip-deposited N-S doped TiO2 thin films were used as visible light harvesters as well as blocking layers in dye sensitized solar cells. When deposited directly on conducting fluorine doped tin oxide electrodes, photo-conversion efficiencies were reduced. However, the opposite configuration, with N-S doped thin films on top of nanoporous TiO2, yielded an increased open-circuit voltage of 0.84 V, a short-circuit current density of 9.86 mA cm−2, and an overall conversion efficiency of 5.88% greater than that of a standard cell. The effectiveness of the blocking layer on the cell efficiencies was analyzed by electrochemical impedance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号