首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Al-Zr-B体系反应合成复合材料的组织和性能   总被引:2,自引:0,他引:2  
开发了原位合成Al-K2ZrF6-KBF4新体系,利用熔体反应法成功制备了新型颗粒增强铝基复合材料。XRD和SEM分析表明,合成的复合材料中存在ZrB2和Al3Zr颗粒,颗粒大小为1~4μm,ZrB2颗粒的截面形貌接近于正六边形,且在基体中均匀分布。拉伸试验结果表明,(Al3Zr+ZrB2)p/Al复合材料的抗拉强度和屈服强度随着反应物加入量的增加而提高。当反应物加入质量分数为20%时,复合材料最高抗拉强度达到152.3MPa,比铝基体提高了95.2%;屈服强度为112.3MPa,比铝基体提高了167.3%。  相似文献   

2.
采用Al-Zr(CO3)2-KBF4体系用熔体反应法成功合成了新型颗粒增强铝基复合材料.XRD和SEM分析表明, Zr(CO3)2和KBF4与铝液反应生成了ZrB2、Al2O3、Al3Zr颗粒,颗粒尺寸细小,且弥散分布于基体中,其平均尺寸约为80~90 nm;拉伸试验结果显示.Al-Zr(CO3)2-KBF4体系反应生成的复合材料的抗拉强度和屈服强度随着反应物加入量的增加均显著提高,复合材料的抗拉强度为150.3 MPa,较铝基体的78.0 MPa提高了 92.7%;屈服强度为113.7 MPa,较铝基体的42.0 MPa提高了170.7%;复合材料的伸长率先升后降;由复合材料的拉伸断口SEM可知,随着反应物质量增加,塑性变形区减小,但仍然是塑性断裂.  相似文献   

3.
Al-Zr及Al-Zr-O体系铝基原位复合材料的制备与组织研究   总被引:2,自引:0,他引:2  
李国强  司乃潮  赵玉涛 《铸造》2005,54(3):233-237
利用Al-Zr及Al-Zr-O体系,应用熔体反应法,成功制备了内生ZrAl3和Al2O3颗粒增强铝基复合材料.用扫描电镜(SEM)、电子探针(EPMA)等研究了(ZrAl3 Al2O3)P/Al复合材料的凝固组织、内在增强体的特征和界面结构.试验结果表明,随着反应物K2ZrF6、ZrSiO4、ZrOCl2粉剂的加入量增加,合金组织中生成的ZrAl3和Al2O3颗粒尺寸更细小,分布更均匀;生成的增强体Al2O3为六方晶体,尺寸为1~3 μm;生成的ZrAl3为四方晶体,尺寸<1μm.颗粒增强铝基复合材料经Sr变质处理后,内生颗粒不再被凝固界面排斥和推移,而是大部分被捕捉进入固相,从而使内生颗粒较均匀的分布于基体中.  相似文献   

4.
赵玉涛 《铸造》2002,51(3):153-156
采用熔体反应法 ,以ZrO2 、ZrSiO4 和ZrOCl2 粉剂为反应物在熔融的铝 ( 85 0℃ )中成功制备了Al/ (Al3 Zr Al2 O3 ) P 复合材料。扫描电镜 (SEM )和电子探针 (EPMA)分析表明 :Al Zr O体系反应生成的复合材料 ,颗粒尺寸细小 ,Al2 O3 为 1~ 3μm ,Al3 Zr小于 1μm ,且弥散分布于基体中。拉伸试验结果显示 :Al Zr O体系反应生成Al/ (Al3 Zr Al2 O3 ) P 复合材料的抗拉强度和屈服强度较基体纯Al均显著提高。其中Al ZrOCl2 体系生成的复合材料的抗拉强度为14 8 7MPa ,屈服强度为 112 4MPa ,分别较基体纯Al提高了 93 6 %和 170 8%。  相似文献   

5.
Al-Zr(CO3)2体系反应合成复合材料的力学性能与断裂行为   总被引:1,自引:1,他引:1  
利用Al-Zr(CO3)2原位反应体系,采用熔体反应法制备了(Al3Zr Al2O3)p/Al复合材料.XRD及SEM分析显示:原位反应生成的颗粒为Al3Zr和Al2O3,颗粒细小并均匀分布在基体中.拉伸实验表明:(Al3Zr Al2O3)p/Al复合材料的抗拉强度和屈服强度随颗粒含量的增大显著提高,当颗粒体积分数为10%时,复合材料的抗拉强度和屈服强度分别为148.3 MPa和110.5 MPa,但延伸率先上升后下降.原位拉伸研究表明:复合材料拉伸过程中裂纹的萌生及扩展机制可从两方面得到解释:滑移过程中的位错作用机制以及颗粒脱粘和破碎形成的"孔洞"成核与长大机制.  相似文献   

6.
利用超声化学熔体原位反应技术合成颗粒增强(Al3Zr ZrB2)/A356复合材料,通过SEM原位拉伸实验及其断裂表面研究分析复合材料的断裂行为。结果表明,复合材料的抗拉强度、屈服强度和伸长率分别达到403.61MPa、343.98MPa和8.9%,较未施加超声作用的复合材料分别提高16.09%、12.9%和32.83%;复合材料的室温拉伸断口SEM形貌表现出明显的韧窝断裂特征,为塑性断裂。裂纹的萌生机制主要有基体在滑移过程中的位错作用机制、内生Al3Zr和ZrB2颗粒脱落或破碎形成的空穴成核机制和基体缺陷诱发机制;由于内生增强颗粒微观分布上的不均匀性,当主裂纹扩展前方遇到颗粒密集区时,其扩展方向偏向颗粒贫化区,绕过颗粒密集区,并沿颗粒富集区与贫化区的界面向前扩展、延伸,形成宏观裂纹。  相似文献   

7.
江润莲  赵玉涛  陈红梅 《铸造》2006,55(11):1149-1151,1169
运用Al-Zr(CO3)2体系熔体反应法制备了(Al3Zr+Al2O3)p/Al合材料,研究了(Al3Zr+Al2O3)p/Al复合材料的力学和磨损性能。结果表明:Al-Zr(CO3)2与Al熔体反应生成了Al2O3、Al3Zr颗粒;(Al3Zr+Al2O3)g/A复合材料的抗拉强度和屈服强度随颗粒理论体积分数的增大而提高,当颗粒体积分数为10%时,复合材料的Rm为148.3MPa,较铝基体提高了90.1%,复合材料的Rp02为110.5MPa,较铝基体的提高了163.1%,复合材料的断后伸长率先升后降;由复合材料的拉伸断口SEM可知:随着反应物质量增加,塑性变形区减小,但仍是塑性断裂;由磨损表面SEM观察表明:(Al3Zr+Al2O3)p/Al复合材料的磨损特征为黏着磨损和磨粒磨损的混合型磨损。  相似文献   

8.
利用Al Zr(CO3)2原位反应体系,采用熔体反应法制备了(Al3Zr Al2O3)p/Al复合材料。XRD及SEM分析显示:原位反应生成的颗粒为Al3Zr和Al2O3,颗粒细小并均匀分布在基体中。拉伸实验表明:(Al3Zr Al2O3)p/Al复合材料的抗拉强度和屈服强度随颗粒含量的增大显著提高,当颗粒体积分数为10%时,复合材料的抗拉强度和屈服强度分别为148.3MPa和110.5MPa,但延伸率先上升后下降。原位拉伸研究表明:复合材料拉伸过程中裂纹的萌生及扩展机制可从两方面得到解释:滑移过程中的位错作用机制以及颗粒脱粘和破碎形成的"孔洞"成核与长大机制。  相似文献   

9.
开发了AlZrOCl2B2O3原位反应新体系,采用熔体反应法以AlZrOCl2B2O3粉剂为反应物成功制备了(ZrB2 ZrAl Al2O3)p/Al复合材料。扫描电镜(SEM)分析表明,该体系生成的复合材料的颗粒细小(≤2μm),且弥散分布于基体中;反应生成的颗粒体积分数随起始反应温度的提高和反应时间的延长而增大,但当温度升至900℃时,颗粒有聚集长大的趋势。通过水淬试样分析,该体系反应的动力学机制为反应破裂扩散机制。  相似文献   

10.
采用微波加热方式反应合成了Al-ZrO2-B系铝基复合材料,探讨了反应过程的基本原理。试验表明,合成反应过程仅需3~6min,且环境友好;未加B粉时,Al-ZrO2系的反应产物由α-Al2O3和Al3Zr组成,其中α-Al2O3为细小颗粒,Al3Zr为块状物,两者均匀分布于Al基体中;当加入B粉后,反应产物中的Al3Zr减少,同时新增了ZrB2增强体颗粒;在x(B)/x(ZrO2)为2时,Al3Zr基本消失,ZrB2也为细小颗粒,与α-Al2O3一同弥散分布于Al基体中,从而形成α-Al2O3和ZrB2复合增强的内生型Al基复合材料。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号