共查询到18条相似文献,搜索用时 109 毫秒
1.
国家标准GB/T 1549—2008《纤维玻璃化学分析方法》中使用重量法-硅钼蓝分光光度法和氟硅酸钾滴定法测定岩棉中二氧化硅,测定结果准确,但是操作繁琐、耗时较长,还涉及环境污染等问题。实验采用混碱熔融-酸化处理的方式溶解样品,选择Si 251.611 nm为分析谱线,使用基体匹配法配制标准溶液系列以消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定岩棉中二氧化硅的分析方法。二氧化硅在线性范围内校准曲线的线性相关系数r为0.999 9;方法中二氧化硅的检出限为0.049 5%,定量限为0.248%。实验方法应用于岩棉实际样品中二氧化硅含量的测定,结果的相对标准偏差(RSD,n=11)小于1.5%,加标回收率为96%~104%。按实验方法测定岩棉样品中二氧化硅含量,测定结果与国标法结果相吻合。 相似文献
2.
富铟烟灰样品种类较多,此类样品使用常规的酸不能完全溶解,需要使用强碱在高温条件下熔样.实验采用过氧化钠熔解试样,盐酸浸取,能使样品溶解完全.试液分取后使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铟.铟的质量浓度为1.00~20.00 μg/mL时,校准曲线的线性相关系数r为0.9999,检出限为0.001%... 相似文献
3.
锑锭中的微量元素含量是确定锑锭品质的主要指标,现行国家标准方法(GB/T 3253.X—2008/2009)操作难度大、效率低,开发新方法极具现实意义。使用王水在低温下溶解样品,并使用氢氟酸抑制锑的水解,选择Pb 220.353 nm、Fe 259.940 nm、Cu 324.754 nm、Cd 214.438 nm、As 193.759 nm、Se 196.090 nm、Bi 190.234 nm、Hg 194.227 nm、S 180.731 nm为Pb、Fe、Cu、Cd、As、Se、Bi、Hg、S的分析谱线,以基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锑锭中Pb、Fe、Cu、Cd、As、Se、Bi、Hg、S等9种微量元素的方法。各元素的校准曲线线性相关系数r均大于0.999 5,方法检出限为0.000 020%~0.000 21%,定量限为0.000 067%~0.000 70%。按照实验方法测定锑锭样品中9种微量元素,结果的相对标准偏差(RSD,n=10)为1.3%~9.4%,与国家标准方法(GB/T 3253.X—20... 相似文献
4.
钨精矿作为钨产品的重要原料,其中的钡会与钨形成难溶的沉淀,故钡含量直接影响钨产品的品质及回收率。实验称取0.500 0 g样品于盛有2 g无水碳酸钠的银坩埚中,覆盖1 g氢氧化钠、1 g过氧化钠和0.1 g氯化锶,在700℃熔融15 min;水浸过滤后以硝酸、高氯酸溶解滤渣;选择Ba 455.40 nm作为分析线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钨精矿中钡的方法。结果表明:钡的质量浓度在0.5~10.0μg/mL范围内与其发射强度呈线性关系,线性相关系数大于0.999 9。钨精矿中铁、钙、镁、锰、镍等共存元素对钡的测定无干扰;方法检出限为0.000 78%,定量限为0.002 6%。按照实验方法测定钨精矿样品中钡,结果的相对标准偏差(RSD,n=11)为1.4%~1.6%,回收率为92%~105%。8个实验室采用实验方法对钨精矿样品中钡进行测定,统计数据结果表明该方法精密度满足产品检测需求,并形成国家标准方法进行推广。 相似文献
5.
6.
样品用过氧化钠高温熔融,试液经硝酸-盐酸酸化后,选择Cr 267.716 nm 作为分析谱线,采用两点法扣除背景克服光谱背景干扰和基体匹配方法消除物理干扰,以铁基体溶液建立校准曲线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定高碳铬铁中铬的方法。在仪器工作条件下,校准曲线的线性范围为w(Cr)=40%~100%,线性相关系数r>0.999。按照实验方法测定高碳铬铁标准样品、合成样品以及实际样品,测定值与认定值、理论值或标准方法GB/T 4699.2-2008测定值基本一致,结果的相对标准偏差(RSD,n=6)小于1.0%。 相似文献
7.
在锌的冶炼过程中,为了防止“烧板”现象,需要快速检测锌精矿中锑元素含量。采用硝酸、氢氟酸微波消解样品,消解结束后加入硫酸,用赶酸仪赶氢氟酸,选择Sb 217.582nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定锌精矿中锑。锌质量浓度为0.05~200mg/L时与其发射强度呈线性关系,相关系数为0.9996;方法检出限为0.003%(质量分数,下同),测定下限为0.01%。按照实验方法测定锌精矿样品中锑,结果的相对标准偏差(RSD,n=12)为1.7%;加标回收率为98%~99%。按照实验方法测定4个锌精矿样品中锑,测定结果与氢化物发生-原子荧光光谱法或硫酸铈滴定法的测定结果一致。 相似文献
8.
标准方法GB/T 14840—2010采用热磷酸溶解石灰岩中的硅酸盐矿物,分离出游离二氧化硅,再用重量法测定其含量,操作较为繁琐。本文利用热磷酸可溶解硅酸盐矿物而几乎不溶解游离二氧化硅的特性分离出石灰岩中的游离二氧化硅,再以氟硼酸解聚已溶出的硅酸,用致密滤纸过滤,使游离二氧化硅与其他矿物完全分离;然后以热水洗涤沉淀3次,在银坩埚中灰化,用1.5 g氢氧化钠熔融、盐酸浸取后,选取Si 251.611 nm为分析谱线,用电感耦合等离子体原子发射光谱法(ICP-AES)测定试液中的二氧化硅,从而建立了石灰岩中游离二氧化硅的测定方法。方法中二氧化硅的校准曲线线性相关系数为0.999 9,线性范围为0.024%~10.0%;方法检出限为0.008%,定量限为0.024%。按照实验方法测定4个石灰岩标准物质中游离二氧化硅,测定值与认定值的相对误差为-0.18%~0.48%,测定结果的相对标准偏差(RSD,n=12)为1.2%~1.9%。选取4个石灰岩样品,分别采用实验方法和标准方法GB/T 14840—2010中的重量法进行测定,以进行方法比对,二者测定结果基本一致。 相似文献
9.
采用氢氧化钾在700℃熔融20min,经盐酸酸化、稀释10倍后,选取Si 251.611nm、Al 396.153nm、Ca 317.933nm、Mg 285.213nm、Ba 233.527nm、P 334.940nm、Cu 213.617nm、Fe 327.393nm、Sr 407.771nm为分析线,使用电感耦合等离子体原子发射光谱法(ICPAES)同时测定Si、Al、Ca、Mg、Ba、P、Cu、Fe、Sr,从而建立了炼钢用脱氧剂中9种主、次量元素的测定方法。结果表明,与酸溶方式相比,采用碱熔前处理对常见的各类脱氧剂可以避免分解不彻底的问题。当称样量为0.1g时,加入2.0g氢氧化钾熔剂可以使样品熔解完全。采用基体匹配法绘制校准曲线可以有效消除基体效应的影响,各元素质量浓度在一定范围内与其发射强度呈线性,校准曲线的线性相关系数r≥0.999 8,各元素的检出限在0.001 6%~0.012%之间。按照实验方法测定脱氧剂样品中Si、Al、Ca、Mg、Ba、P、Cu、Fe、Sr,结果的相对标准偏差(RSD,n=11)在0.81%~4.5%之间。实验方法用于测定4个脱氧剂标准样品(E511d、YSB 14609-2001、YSB 14606-2001、YSB 14607-2001)中Si、Al、Ca、Mg、Ba、P、Cu、Fe、Sr,测定值与认定值吻合较好,相对误差在0.25%~7.14%之间。 相似文献
10.
样品采用氢氧化钠在锆坩埚中熔融后、再使用硼酸溶液浸取和硝酸酸化,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定硅、铝、铁、钾、镁、钛,从而建立了萤石中硅、铝、铁、钾、镁、钛的测定方法。试验探讨了基体效应的影响,认为溶液中大量存在的钠(4.37~4.83mg/mL)对钾的信号强度稍有影响,但其影响程度小于2.4%,而对其他元素的影响可以忽略;钙(120~200μg/mL)、硼(56.8~85.2μg/mL)和锆(小于4.0μg/mL)对各元素的测定没有显著的影响。试验还考察了酸度的影响,结果表明溶液中一定酸度范围的硝酸对各元素的测定基本没有影响。在选定的工作条件下,各元素的校准曲线呈线性,线性相关系数r为0.999 9~1.000 0,方法检出限为3~105μg/g。方法的测定范围能覆盖所有萤石牌号中硅、铝、铁、钾、镁、钛等元素的测定。按照实验方法测定萤石标准样品YSB 14791-02、GBW07252、GSB 08-1348-2001、Fluorspar 2712中硅、铝、铁、钾、镁、钛,结果的相对标准偏差(RSD,n=5)为0.10%~9.5%,并与认定值相吻合。 相似文献
11.
建立了用电感耦合等离子体原子发射光谱法(ICP-AES)测定炼锑泡渣中碲的方法。选择波长为214.281 nm的谱线作为碲的分析线,只有La 214.281 nm, V 214.274 nm, Pt 214.250 nm, Nb 214.291 nm和 Re 214.297 nm线有干扰,但炼锑泡渣中La、V、Pt、Nb、Re含量都很低,其影响可以忽略,因此不需要进行预分离,样品用王水溶解后可直接进行ICP-AES测定。考察了仪器工作参数对测定结果的影响,并确定了最佳工作条件:观测高度为15 mm,雾化气流速为0.8 L/min,射频功率为1 300 W。方法线性范围为0.01~100 mg/L,线性相关系数为1.000 0,检出限(3σ)为0.007 2 mg/L,样品测定结果的相对标准偏差(RSD)为0.16%,加标回收率为97%~102%。 相似文献
12.
样品采用氢氧化钠-过氧化钠高温熔融,试液经盐酸-硝酸酸化,溶解完全后,选取Al 396.156 nm作为分析谱线,以电感耦合等离子体原子发射光谱法(ICP-AES)测定铜渣精矿中铝。为消除钠离子对测定的干扰,对溶液进行稀释并用基体匹配法配制标准系列溶液曲线,校准曲线线性相关系数为0.999 99;其他共存元素不干扰测定。方法中铝的检出限为0.007 8 μg/mL,测定下限为0.039 μg/mL。按照实验方法测定铜渣精矿实际样品,结果的相对标准偏差(RSD,n=7)为1.4%~2.0%,测定值与滴定法的测定结果基本吻合。 相似文献
13.
铝用炭素材料无法采用普通酸溶解,需要经过灰化-熔融-酸浸取法或混合酸-微波消解法处理。实验选择灰化-偏硼酸锂熔融法处理样品,即:700 ℃下灰化6 h、1 000 ℃下偏硼酸锂熔融5 min、10%(V/V)硝酸浸取熔块,避免了高温处理样品引起某些测定元素的损失;同时对由熔剂引入产生的基体效应采用基体匹配法进行消除;选择Al 396.152 nm、Ba 455.403 nm、Ca 317.933 nm、Cr 267.716 nm、Fe 259.940 nm、K 766.490 nm、Mg 285.213 nm、Mn 257.610 nm、Na 589.592 nm、Ni 231.604 nm、P 177.495 nm、Si 288.158 nm、Ti 334.941 nm、V 292.402 nm和Zn 213.856 nm为分析线,在绘制校准曲线时进行基体匹配,实现了电感耦合等离子体原子发射光谱法(ICP-AES)对铝用炭素材料中15种元素的测定。方法中各元素校准曲线的线性相关系数均大于0.999;各元素的检出限为0.000 01%~0.000 3%,定量限为0.000 04%~0.001 0%。方法用于测定铝用炭素标准样品GPW-4、GPW-5、GPW-6中各元素,测定结果的相对标准偏差(RSD, n=6)为0.17%~10%;回收率为91%~107%;测定结果与标准值基本一致。 相似文献
14.
铝用炭素材料无法采用普通酸溶解,需要经过灰化-熔融-酸浸取法或混合酸-微波消解法处理。实验选择灰化-偏硼酸锂熔融法处理样品,即:700 ℃下灰化6 h、1 000 ℃下偏硼酸锂熔融5 min、10%(V/V)硝酸浸取熔块,避免了高温处理样品引起某些测定元素的损失;同时对由熔剂引入产生的基体效应采用基体匹配法进行消除;选择Al 396.152 nm、Ba 455.403 nm、Ca 317.933 nm、Cr 267.716 nm、Fe 259.940 nm、K 766.490 nm、Mg 285.213 nm、Mn 257.610 nm、Na 589.592 nm、Ni 231.604 nm、P 177.495 nm、Si 288.158 nm、Ti 334.941 nm、V 292.402 nm和Zn 213.856 nm为分析线,在绘制校准曲线时进行基体匹配,实现了电感耦合等离子体原子发射光谱法(ICP-AES)对铝用炭素材料中15种元素的测定。方法中各元素校准曲线的线性相关系数均大于0.999;各元素的检出限为0.000 01%~0.000 3%,定量限为0.000 04%~0.001 0%。方法用于测定铝用炭素标准样品GPW-4、GPW-5、GPW-6中各元素,测定结果的相对标准偏差(RSD, n=6)为0.17%~10%;回收率为91%~107%;测定结果与标准值基本一致。 相似文献
15.
钒钛磁铁矿中因含量较低而不能被有效利用的Sc,在采用熔盐氯化法提取Ti时被富集于熔盐废渣中,为配合回收熔盐废渣中宝贵的Sc、Ti资源,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定熔盐废渣中0.001%~0.5% Sc和0.25%~5.0%Ti的方法。采用HF、H2SO4溶解熔盐废渣,实验优化了其配比、用量和反应条件,确保样品被快速溶解完全,并且通过SiF4挥发逸出、CaSO4沉淀分离等方式尽量除去SiO2、CaO等高含量基体组分,以及采用形成TiOSO4络合物离子的方式解决高浓度Ti4+在低酸度介质下易水解的问题,从而减少样品测试溶液的酸度及其共存组分构成,有效降低基体效应等影响;重点试验了试液中共存组分的光谱干扰、连续背景叠加、基体效应等干扰因素的影响,通过优选待测元素的分析谱线及其检测积分和背景校正区域以及光谱仪工作参数等,并且采用同步背景校正法消除共存基体组分的影响。校准曲线中Sc线性范围为0.001%~0.5%,线性相关系数为0.999 6;Ti的线性范围为0.25%~5.0%,线性相关系数为0.999 2;方法检出限为0.000 01%Sc和0.000 38%Ti;元素的含量水平为0.01%~0.1%(质量分数)时结果的相对标准偏差(RSD,n=8)小于3%,含量水平为1.0%~5.0%(质量分数)时结果的相对标准偏差(RSD,n=8)小于1%;加标回收率为92%~109%。按照实验方法测定4个氯化提钛熔盐废渣样品,分别与ICP-AES测定稀土矿石中Sc(GB/T 17417.2—2010)和硫酸铁铵滴定法测定铁矿石中Ti(GB/T 6730.23—2006)进行比对,结果相一致。 相似文献
16.
对于成分复杂含硫量高的土壤以及矿石样品,采用敞口酸溶时,由于样品溶解不完全从而造成硫的测定结果偏低。实验采用3.0g氢氧化钠为熔剂,在750℃马弗炉熔融8min,可以将0.50000g样品熔解完全;使用沸水提取后,加入酒石酸掩蔽碱金属以及二价金属离子,使用盐酸酸化并稀释溶液,最终采用电感耦合等离子体原子发射光谱法(ICP-AES)测定地质样品中硫。校准曲线的线性相关系数大于0.999,方法检出限为35μg/g。实验方法用于测定土壤、水系沉积物、岩石标准物质中硫,测定结果的相对标准偏差(RSD,n=12)为1.6%~5.0%;硫的测定值与认定值基本一致,相对误差均不大于4.6%。按照实验方法测定硫含量高的土壤和岩石实际样品,测定结果的RSD(n=12)不大于1.6%。方法可以有效解决硫含量高的难熔样品中硫的测定问题,经过碱熔-酸化处理后的样品溶液通过调节pH值还可以用于氟离子选择性电极测定氟。 相似文献
17.
对于成分复杂含硫量高的土壤以及矿石样品,采用敞口酸溶时,由于样品溶解不完全从而造成硫的测定结果偏低。实验采用3.0g氢氧化钠为熔剂,在750℃马弗炉熔融8min,可以将0.500 00g样品熔解完全;使用沸水提取后,加入酒石酸掩蔽碱金属以及二价金属离子,使用盐酸酸化并稀释溶液,最终采用电感耦合等离子体原子发射光谱法(ICP-AES)测定地质样品中硫。校准曲线的线性相关系数大于0.999,方法检出限为35μg/g。实验方法用于测定土壤、水系沉积物、岩石标准物质中硫,测定结果的相对标准偏差(RSD,n=12)为1.6%~5.0%;硫的测定值与认定值基本一致,相对误差均不大于4.6%。按照实验方法测定硫含量高的土壤和岩石实际样品,测定结果的RSD(n=12)不大于1.6%。方法可以有效解决硫含量高的难熔样品中硫的测定问题,经过碱熔-酸化处理后的样品溶液通过调节pH值还可以用于氟离子选择性电极测定氟。 相似文献
18.
采用过氧化钠在800 ℃的高温炉中熔融样品,然后在5%(V/V)盐酸介质中,用电感耦合等离子体原子发射光谱法测定了废钌催化剂中钌含量。对样品的预处理方法和检测方法进行了研究和对比,并考察了废钌催化剂中多种金属杂质对钌检测的影响,结果表明试液中与钌等量存在的Na、Ca、Mg、Pb、Al、Co、Ni、Zn、Cd、Bi、Ag、Mn、Rh、Au、Fe等元素对测定没有干扰。用本法测定了两个含量不同的钌废料样品,钌的测定值与重量法的测定值相符。方法简便、快速,适用于钌废料和钌炭催化剂中钌的测定。 相似文献