首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 149 毫秒
1.
为了从理论上表征平面正交织物球面成型后的几何特征, 提出基于坐标变换求解渔网模型的新方法, 确定单层正交平面织物在球面上铺覆成型后的网格位置、 织物剪切变形和纱线弯曲变形。依据弧长不变条件确定方形织物完全包覆球面后的对称面上的网格位置和局部坐标系下中间网格的位置, 利用坐标变换获得中间网格在整体坐标系成型球面上的坐标位置; 根据变形前后的网格形状确定织物面内剪切变形和两个方向纱线的弯曲曲率, 为织物的球面成型性评价提供几何参数。通过实例证明了当网格尺寸远小于球体半径时铺覆变形程度与网格 尺寸无关, 也与球体半径无关。铺覆后织物的剪切变形和纱线弯曲变形分布只与织物在球面上的球坐标位置有关。  相似文献   

2.
建立了平纹织物的三维细观几何模型,利用LS-DYNA有限元软件模拟了弹丸冲击的条件下,单层芳纶织物的响应过程。模型的几何形状参考了平纹织物的截面显微镜照片,使建立的模型更加准确,更接近平纹织物真实的结构。纱线模型选用正交各向异性材料,材料参数和失效条件均参考真实的Kevlar织物,并考虑纱线和纱线之间以及纱线和弹丸之间的摩擦。模拟中,通过设定弹丸的撞击速率Vs,得到剩余速率Vr,并由此计算单层织物的弹道极限速率V50。结果表明:织物的变形过程和失效形式在模拟中得到细致的显现,模拟所得结果V50和织物的失效形式与实验结果的一致程度较好。  相似文献   

3.
建立了平纹织物的三维细观几何模型,利用LS-DYNA有限元软件模拟了弹丸冲击的条件下,单层芳纶织物的响应过程。模型的几何形状参考了平纹织物的截面显微镜照片,使建立的模型更加准确,更接近平纹织物真实的结构。纱线模型选用正交各向异性材料,材料参数和失效条件均参考真实的Kevlar织物,并考虑纱线和纱线之间以及纱线和弹丸之间的摩擦。模拟中,通过设定弹丸的撞击速率Vs,得到剩余速率Vr,并由此计算单层织物的弹道极限速率V50。结果表明:织物的变形过程和失效形式在模拟中得到细致的显现,模拟所得结果V50和织物的失效形式与实验结果的一致程度较好。  相似文献   

4.
预成型体渗透率预测及其受压缩变形的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了织物预成型体单胞内纱线间细观流动和纱线内部微观流动的统一的数学模型。基于最小势能原理建立了织物松弛状态下的单胞几何模型,同时对在模具压缩下的单胞变形进行了分析,并建立了不同压缩状态下的单胞几何模型。通过对单胞内树脂流动数学模型的数值求解,获得了流动速度场及压力场,进而预测了预成型体的渗透率。预测1组不同压缩状态下的单胞渗透率,研究了预成型体压缩变形对渗透率的影响。结果显示:随着压缩量的增加,其渗透率逐渐降低。通过实验测量及数据分析,验证了建模和预测方法的正确性。  相似文献   

5.
四步法三维矩形编织复合材料的细观结构模型   总被引:9,自引:4,他引:5       下载免费PDF全文
基于现有实验研究和编织工艺中携纱器的运动规律, 重点分析了材料内部区域纤维束的空间构型, 建立了材料的三维实体细观结构模型。该模型不仅体现了内部纱线因打紧工序而形成的紧密接触和截面变形, 而且考虑了内部和表面区域纱线因挤紧状态不同所造成的纱线填充因子变化。基于一种单胞取向平行于材料横截面边界方向的新划分方案, 解决了45°单胞划分方案的不足, 建立了便于力学性能分析的单胞几何模型, 并指出了编织工艺参数和模型宏细观结构参数的关系。模型数值结果与试件实测数据吻合, 表明了该模型的合理有效性,为材料后续力学性能分析奠定了基础。   相似文献   

6.
预定型平纹织物的剪切模型   总被引:4,自引:3,他引:1       下载免费PDF全文
预定型织物是一种用于纺织复合材料液态成型的新型材料, 可以提高复合材料构件的形状精度和尺寸精度。由于织物中存在定型剂, 使织物材料的性能发生改变。基于像框剪切试验, 建立预定型平纹织物剪切变形的理论模型。与干态织物相比, 重点分析了预定型织物中纱线的弯曲刚度和纱线摩擦系数的变化对剪切性能的影响; 同时模型中考虑了剪切过程中纱线轴向力的变化对剪切性能的影响。另外, 利用立式显微镜观察了在纱线挤压阶段纱线宽度变化的规律, 考虑了定型剂和织物结构对纱线宽度变化的影响。根据平衡方程得到预定型平纹织物的剪切模型, 通过与试验结果比较, 该模型可以较好地预测预定型平纹织物的剪切变形性能。   相似文献   

7.
目前,对纤维织物超高速碰撞过程中的变形、断裂、破碎等力学行为已有较广泛的研究,但对碰撞过程中纱线间接触问题的分析尚未见公开文献报道。考虑纱线间的相互作用,建立了纤维织物的FEM-SPH耦合单胞模型,该模型不仅能够进行纤维织物超高速碰撞过程中的穿孔断裂、破碎、碎片云扩展等损伤行为分析,还能够进行纱线间的接触作用过程分析。结果表明,该模型分析结果与试验结果具有较好的一致性。   相似文献   

8.
论文提出一种基于拉普拉斯网格变形的三维植物叶片交互式设计方法。该方法以叶片轮廓及叶片主脉中轴点数据输入并生成网格曲面,通过拉普拉斯网格变形技术对叶片的曲面网格进行交互式编辑。轮廓中轴数据点既可以通过三维数字化获得,也可以根据叶脉形态计算得到。实验证明,该方法具有较好的普适性,变形计算快速,能够达到实时交互设计的需要,所生成的叶片不仅能够很好地保持叶片的面积特征,同时在形态上具有较强的真实感。  相似文献   

9.
在实际成形过程中,碳纤维复合材料往往处于复杂的应力状态,开展近于真实载荷环境下的力学试验分析,能够更准确地认识实际应用中材料的成形性能和变形机理.为获得碳纤维织物的基本力学特性,设计了平纹碳纤维织物拉伸试样及成形试样,进行了单轴拉伸、双轴拉伸、镜框剪切试验和方盒冲压成形实验研究,对比了不同双拉比及纱线取向对力学性能及成形性能的影响.研究结果表明:碳纤维织物具有高度的非线性、各向异性和双拉耦合特性,即经纬向纤维的力学性能会相互影响;剪切变形是成形过程中的主要变形模式,当剪切角达到临界锁死角时,织物发生起皱现象;同种织物不同纱线取向试样表现出不同的成形性能,因此可以根据零件几何形状选择合适纤维取向的织物,从而减少缺陷,优化成形零件的力学性能.研究结果为后续建立碳纤维织物本构模型和成形仿真奠定了基础.  相似文献   

10.
以超高分子量聚乙烯(UHMW-PE)纤维织物增强-聚乙烯(PE)涂层柔性复合材料作为研究对象,首先,通过离子抛光仪对复合材料横截面进行处理;然后,使用SEM和光学显微镜测量复合材料细观结构,获得复合材料细观几何参数;最后,基于均匀化方法和连续介质假设,建立单胞力学模型,计算单胞的拉伸载荷-应变曲线,将理论值与实验值进行比较。结果表明:基于多尺度方法的复合材料单胞力学模型所得拉伸载荷-应变曲线与实验所得曲线能较好吻合,该理论模型能够较好地预报纤维织物增强柔性复合材料的拉伸模量。   相似文献   

11.
12.
三维四步方形编织结构的几何建模   总被引:1,自引:0,他引:1  
研究三维复合材料的编织结构是分析这种材料力学性能的前提。从三维编织工艺和实际的编织过程出发,针对方形编织结构提出了一种单元几何模型。该模型以携纱器循环一周返回到起始位置所形成的纱线编织结构作为单元,保证了纤维束的连续性和材料整体结构的完整性。对每根纱线,选取它在编织体各个区域内合适的控制点,过这些控制点拟合成三次样条曲线,以此模拟纱线的空间结构中心线。最后得到纱线和编织体的结构。  相似文献   

13.
纺织电阻传感器具有质量轻、柔性好和可拉伸等优良特性,在可穿戴电子产品领域具有很大的应用价值.文中根据近年来不同纺织材料基电阻传感器的研究进展,介绍了无捻纤维(束)基电阻传感器、纱线(长丝纱、短纤维纱、复合纱)基电阻传感器和织物(针织物、机织物、非织造织物)基电阻传感器的制备、性能及应用研究.在纱线基电阻传感器中,主要基...  相似文献   

14.
Mesoscopic discrete models of dry fabric have been developed based on a discretization of the yarn geometry, accounting for the yarn–yarn interactions at the yarns crossing points. From a mechanical viewpoint, yarns are modeled as elastic straight bar elements representing stretching springs connected at frictionless hinges by rotational springs. The motion of each node along the yarn is described by a lateral displacement and a local rotation. The expression of the reaction force exerted by the transverse yarns at the contact points is assessed from Timoshenko beam theory. In a general situation, the reaction force is obtained by solving a linear system of equations involving all the nodal displacements at the contact points (with the transverse yarns) for each yarn. The equilibrium shape of the woven is obtained as the minimum of its total potential energy, accounting for the work of the reaction forces due to the transverse yarns. The finding of the absolute minimum of the structure’s total potential energy is achieved by a genetic algorithm, based on an initial guess of the solution relying on beam mechanics. Simulations of the fabric response under uniaxial tension evidence the effect of yarn-yarn interactions due to the increase of the reaction forces, as well as the effect of the transverse yarn properties. Plain weave has a nonlinear response due to the crimp change, whereas serge shows a quasi linear response due to yarn extension being the dominant deformation mechanism.  相似文献   

15.
With nesting between adjacent layers and inter-layer packing, the microstructure and the compaction behaviour of a multilayer woven fabric preform are much more complicated than those of a single layer fabric preform. A micromechanical model, based on the hierarchical structure characteristics of woven fabric preforms, was developed to investigate the elastic compaction behaviour of multilayer plain weave fabric preforms. The compaction mechanisms of fabrics at different hierarchical levels including deformation and compaction of yarn cross-section, flattening of yarn waveform, nesting between adjacent layers and inter-layer packing, are considered in an integrated approach in this predictive model. Effects of structural elements at different hierarchical levels on compaction behaviour of multilayer plain weave fabric preforms are investigated in detail. Both the number of layers and shifting are shown to have significant effects on compaction behavior, while the effect of nesting increases as the number of layers increases. The predictions by this model are correlated well with the experimental data.  相似文献   

16.
Three-dimensionally (3D) knitted technical textiles are spreading into industrial applications, since their geometric, structural and functional performance can be tailored and optimized on fibre-, yarn- and fabric levels by customizing yarn materials, knit patterns and geometric shapes. The ability to simulate their complex mechanical behaviour is thus an essential ingredient in the development of a digital workflow for optimal design and manufacture of 3D knitted textiles. Here, we present a multi-scale modelling and simulation framework for the prediction of the nonlinear orthotropic mechanical behaviour of single jersey knitted textiles and its experimental validation. On the meso-scale, representative volume elements (RVEs) of the fabric are modelled as single, interlocked yarn loops and their mechanical deformation behaviour is homogenized using periodic boundary conditions. Yarns are modelled as nonlinear 3D beam elements and numerically discretized using an isogeometric collocation method, where a frictional contact formulation is used to model inter-yarn interactions. On the macro-scale, fabrics are modelled as membrane elements with nonlinear orthotropic material behaviour, which is parameterized by a response surface constitutive model obtained from the meso-scale homogenization. The input parameters of the yarn-level simulation, i.e., mechanical properties of yarns and geometric dimensions of yarn loops in the fabrics, are determined experimentally and subsequent meso- and macro-scale simulation results are evaluated against reference results and mechanical tests of knitted fabric samples. Good agreement between computational predictions and experimental results is achieved for samples with varying stitch values, thus validating our novel computational approach combining efficient meso-scale simulation using 3D beam modelling of yarns with numerical homogenization and nonlinear orthotropic response surface constitutive modelling on the macro-scale.  相似文献   

17.
A micromechanical model was developed to investigate elastic compression behaviour during compaction of a single layer of woven fabric preform. The compaction model describes two important deformation mechanisms at different hierarchical levels, addressing micro-deformation of yarn cross-section compaction and macro-deformation of yarn bending accompanied by yarn waveform flattening. The stress carried by the fabric is decomposed into two parts in relation to two distinct mechanisms, coupled through the requirement of deformation compatibility. With this micromechanical model the effects of microstructures of single layer woven fabric on their compaction behaviour are evaluated. It is shown that both the macro-bending stiffness of fibre and the initial fibre packing ratio of yarn affect the compaction behaviour of single layer fabric preform. The prediction is correlated with experimental data available, and satisfactory agreement is observed.  相似文献   

18.
A meso/macro discrete model of fabric has been developed, accounting for yarn-yarn interactions occurring at the crossing points. The fabric yarns, described initially by a Fourier series development, are discretized into elastic straight bars represented by stretching springs and connected at frictionless hinges by rotational springs. The motion of each node is described by a lateral displacement and a rotation. The compressibility of both yarns is expressed as a kinematic relationship, considering frictionless motions of the yarns. The expression of the reaction force exerted by the transverse yarns at the contact points is then assessed, from which the work of the reaction forces is established. The equilibrium shape of the yarn is obtained as the minimum of its total potential energy, accounting for the work of the reaction forces due to the transverse yarns. Simulations of a traction curve of a single yarn are performed, that evidence the effect of the yarn interactions and the main deformation mechanisms.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号