首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
正Ever since its creation in 1963 [1], laser-induced breakdown spectroscopy(LIBS)has gained considerable attention due to its unique capability for real-time, in situ or online analysis [2, 3]. The future world is heading into the age of artificial intelligence(AI), and data would be the most valuable asset for human society [4].  相似文献   

2.
Laser-induced breakdown spectroscopy(LIBS) has been proven to be an attractive technique for in situ oceanic applications.However,when applying LIBS into deep-sea,the pressure effect caused by different ocean depths is inescapable and could have great influence on the LIBS signals.In this work,spectral characteristics of underwater LIBS were investigated as a function of pressure in the range of 0.1-45 MPa.A high-pressure chamber built in the laboratory was used to simulate the high-pressure deep-sea environment.Optimal laser energy and detection delay were first determined under different pressure conditions and were shown to be independent of the external pressure.The increase in pressure has a significant impact both on the peak intensity and line broadening of the observed spectra.The peak intensity of Na,Li and K lines increases with the increasing pressure until a maximum intensity is reached at 12.5 MPa.Above this value,the peak intensity decreases gradually up to 45 MPa.For Ca line,the maximum intensity was observed at 30 MPa.The line broadening keeps constant at low pressures from 0.1-10 MPa,while it increases linearly at higher pressures,indicating a higher electron density caused by the compression effect of the high external pressure.We also compared the spectral data obtained from the high-pressure chamber and from the field sea trials,and the good consistency between the laboratory data and sea-trial data suggested the key role of pressure effect on underwater LIBS signals for practical deep-sea applications.  相似文献   

3.
In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.  相似文献   

4.
This work reports spectroscopic studies of uranium containing plasma generated in air and argon environments. The 532 nm Q-switched Nd:YAG laser generates the optical breakdown plasma, which was recorded by a spectrometer and an intensified charge coupled device having a resolution of 25 pm. Neutral and ionized uranium lines in the wavelength range of 385.8–391.9 nm indicate significant width and shift variations during the first few microseconds. Electron temperature and density of the plasma are determined using the Boltzmann plot and the Saha–Boltzmann equation at various time delay. The study reveals the power law decay pattern of electron temperature and density, which changes to exponential decay pattern if large gate- width is used to acquire the signal, due to an averaging effect.  相似文献   

5.
Calibration-free laser-induced breakdown spectroscopy can overcome the matrix effect and the huge application prospects of in situ and on-line measurement, so it has been studied and applied to many analytical samples by numerous researchers since it was first proposed in 1999.However, its accuracy is always lower than other analytical techniques and traditional quantitative analysis methods of laser-induced breakdown spectroscopy. The goal of this paper is to review the improvement of accuracy in the experimental setup and spectral analysis,especially after 2010, but not limited to it. The main contents include the accurate measurement of spectral intensity, the spatial and temporal window of local thermodynamic equilibrium and the accurate calculation of temperature and electron density. Due to the requirement of one or more standard samples, the combination of standard samples and CF-LIBS is discussed as a separate section. Finally, a simple conclusion is offered to relevant researchers who want to use CF-LIBS for quantitative analysis.  相似文献   

6.
Tokamak exhaust is an important part of the deuterium-tritium fuel cycle system in fusion reactions. In this work, we present a laser-induced breakdown spectroscopy (LIBS)-based method to monitor the gas compositions from the exhaust system in the tokamak device. Helium (He), a main impurity in the exhaust gas, was mixed with hydrogen (H2) in different ratios through a self-designed gas distribution system, and sealed into a measurement chamber as a standard specimen. A 532 nm wavelength laser pulse with an output power of 100 mJ was used for plasma excitation. The time-resolved LIBS is used to study the time evolution characteristics of the signal strength, signal-to-background ratio (SBR), signal-to-noise ratio (SNR) and relative standard deviation (RSD) of the helium and hydrogen characteristic lines. The Boltzmann two-line method was employed to estimate the plasma temperature of laser-induced plasma (LIP). The Stark-broadened profile of He I 587.56 nm was exploited to measure the electron density. From these studies, an appropriate time was determined in which the low RSD% was consistent with the high signal-to-noise ratio. The He I 587.56 nm and Hα emission lines with good signal-to-noise ratio were extracted from the spectrum and used in the external standard method and internal standard method for quantitative analysis. The test results for mixed gas showed that the average relative error of prediction was less than 11.15%, demonstrating the great potential of LIBS in detecting impurities in plasma exhaust gas.  相似文献   

7.
Laser-induced breakdown spectroscopy (LIBS) has attracted extensive attention as a new technique for in-situ marine application. In this work, the influence of deep-sea high pressure environment on LIBS signals was investigated by using a compact LIBS-sea system developed by Ocean University of China for the in-situ chemical analysis of seawater. The results from the field measurements show that the liquid pressure has a significant effect on the LIBS signals. Higher peak intensity and larger line broadening were obtained as the pressure increases. By comparing the variations of the temperature and salinity with the LIBS signals, a weak correlation between them can be observed. Under high pressure conditions, the optimal laser energy was higher than that in air environment. When the laser energy exceeded 17 mJ, the effect of laser energy on the signal intensity weakened. The signal intensity decreases gradually at larger delays. The obtained results verified the feasibility of the LIBS technique for the deep-sea in-situ detection, and we hope this technology can contribute to surveying more deep-sea environments such as the hydrothermal vent regions.  相似文献   

8.
Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350 °C, 1400 °C, and 1450 °C. The results showed that slag composi...  相似文献   

9.
Seashell has been applied as an indicator for ocean research and element analysis of the seashell is used to track biological or environmental evolution.In this work,laser-induced breakdown spectroscopy(LIBS) was applied for elementary analysis of an ezo scallop-shell,and a graphite enrichment method was used as the assistance.It was found that LIBS signal intensity of Ca fluctuated less than 5%,in spite of the sampling positions,and Sr/Ca was related to the shell growth.A similar variation was also found when using a direct LIBS analysis on the shell surface,and it might be more practicable to track shell growth by investigating Sr/Ca ratio with Sr ionic line at 421.6 nm.The obtained results prove that calcium(Ca) is qualified as an internal reference for shell analysis,and LIBS is a potential analytical method for seashell study.  相似文献   

10.
Aqueous ruthenium was detected in real-time under ambient conditions using microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS). A 10 mJ laser energy and 750 W microwave power were directed at an open liquid jet sample of ruthenium. It was observed that, for liquid flow, the coupling efficiency between the microwave and the laser-induced plasma was limited to 43%. The improvement in the ruthenium's signal-to-noise ratio with MW-LIBS, with respect to LIBS, was 76-fold. Based on MW-LIBS, the limit of detection for aqueous ruthenium was determined to be 957 ± 84 ppb.  相似文献   

11.
As traditional Chinese medicines, Fritillaria from different origins are very similar and it is difficult to distinguish them. In this study, the laser-induced breakdown spectroscopy combined with learning vector quantization(LIBS-LVQ) was proposed to distinguish the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa. We also studied the performance of linear discriminant analysis, and support vector machine on the same data set. Among these three classifiers, LVQ had the highest correct classification rate of 99.17%. The experimental results demonstrated that the LIBS-LVQ model could be used to differentiate the powdered samples of Fritillaria cirrhosa and non-Fritillaria cirrhosa.  相似文献   

12.
Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.  相似文献   

13.
Laser beams with ns pulse width are generally employed as an excitation source in the process of detecting inclusions and elemental segregation on a workpiece surface by microanalysis of the laser-induced breakdown spectroscopy.In addition,the ablation crater interval of laser sampling on the sample surface is generally 20 μm or more.It is difficult to detect the morphology of inclusions smaller than 50 μm in diameter and the micro-segregation of elements.However,in this work,when the laser ablation crater is 10 μm and the sampling resolution of the laser on the sample surface is 5 μm,the morphology and distribution of spherical inclusions (20-60 μm) in ductile iron can be detected according to the difference of the Fe spectrum on the Fe matrix and the spheroidal inclusions.Moreover,the distribution of micro-segregation of Mg and Ti elements in ductile iron was also studied.  相似文献   

14.
Laser-induced breakdown spectroscopic in-depth measurements were undertaken for two ITER-like calibrated multi-layered samples made of W-Mo or W/C layers on Ti-substrates. The samples were previously characterized by glow discharge optical emission spectroscopy. For laser-induced breakdown spectroscopic measurements, pulses generated by Nd:YAG laser sources with 1064 nm, 532 nm, 355 nm and 266 nm wavelengths were applied. The effects of laser beam shaping, fluence and wavelength as well as the gas nature (air, Ar, He) and pressure were investigated. The results obtained with laser-induced breakdown spectroscopic in-depth measurements were compared to those obtained with glow discharge optical emission spectroscopy and found to be in agreement. However, a mixing of the layers was observed and attributed to diffusion through the melted material and to the non-homogeneity of the laser beam spatial distribution. The depth resolution was found of the order of several thermal diffusion lengths but should be improved by using picosecond laser pulse duration.The results promote applications to tritium concentration measurements with depth resolution in the deposited layers of Tokamak first walls, as in the case of the future fusion reactor ITER.  相似文献   

15.
16.
Laser-induced breakdown spectroscopy(LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions.The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers.To prevent the interference from metallic elements,three atomic emission lines(C I 247.86 nm,H I 656.3 nm,and O I 777.3 nm) and one molecular line C–N(0,0) 388.3 nm were used.The cluster analysis results were obtained through an iterative process.The Davies–Bouldin index was employed to determine the initial number of clusters.The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion.With the proposed approach,the classification accuracy for twenty kinds of industrial polymers achieved 99.6%.The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.  相似文献   

17.
Laser-induced breakdown spectroscopy has become a general-purpose technique, and internal standard calibration is a common method for quantitative analysis. Calibration models should be reconstructed for different systems and application environments. This study presents an efficient procedure in the construction and selection of calibration models for LIBS analysis. The procedure concludes data preprocess, calibration model construction, and concentration calculation. These steps can be programmed without manual intervention. Results of the quantitative analysis of Ni-based alloys using the proposed procedure are presented in this study.Ten elements are calibrated, and most have an average relative standard error of less than 10%.The proposed procedure is an effective process for constructing and selecting calibration models.  相似文献   

18.
In this paper, we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air. A brass was selected as ablated target of the experiment. The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers, and the two parameters were improved by increasing the sample temperature in both cases. Moreover, the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma, and the increase of the plasma temperature in the case of nanosecond laser was more evident. In addition, there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas. The electron density for femtosecond laser decreased with increasing the target temperature, while for nanosecond laser, the electron density was almost unchanged at different sample temperatures.  相似文献   

19.
According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy(LIBS) has shown a great potential for rapid analysis in steel industry.Nevertheless, the accuracy and precision may be limited by complex matrix effect and selfabsorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine(GA-KELM) is proposed for quantitative analysis of multiple elements(Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples.First, the standardized peak intensities of selected spectra lines are used as the input of model.Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor(R~2), Root-meansquare Errors of Calibration(RMSEC), Root-mean-square Errors of Prediction(RMSEP) of GAKELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号