共查询到20条相似文献,搜索用时 218 毫秒
1.
The process of magnetic flux compression (MFC) inside a solenoid by expanding diamagnetic plasma sphere produced by an inertial fusion micro-explosions and its application as a direct energy conversion scheme to convert a part of plasma kinetic energy into pulsed electrical energy has been recently reported [1]. For a detailed analysis of this concept, an Eulerian multi-material MHD model is developed using magnetic vector potential formulation for electro-magnetic field calculations and classical volume-of-fluid method for material interface tracking. The diffusion term in the magnetic induction equation is solved implicitly while the advection terms are computed using a second-order MUSCL scheme. An iteration procedure using ADI scheme is used for the free space field calculation. In this paper, we describe the details of the new MHD model, its validation against the semi-analytical solutions (for magnetic Reynolds number ?1) of magnetic convective-diffusion equations and application to explore the concept of MFC by expanding plasma sphere. The simulation results show that the algorithm is capable of handling complex plasma dynamics inside the MFC system. Also, the results indicate the development and the evolution of MRT like instability near the stagnation point. The magnetic field diffusion into the plasma during the expansion phase is found to be negligible. 相似文献
2.
A conceptual study of magnetic flux compression inside a cylindrical coil by an expanding inertial fusion plasma sphere across the magnetic field produced by the coil itself have been performed numerically using a two-dimensional magnetohydrodynamic (MHD) simulations. The concept may find application in inertial fusion energy (IFE) system as a direct energy conversion scheme to convert a part of fusion plasma kinetic energy into pulsed electrical energy. Important theoretical and technical issues that has to be addressed are discussed. Preliminary theoretical analysis are given for the analysis of MHD interchange instabilities of expanding plasma across magnetic field. Overall efficiency of the system is determined numerically for a typical set of initial plasma and system parameters. Ultrahigh coil inter-turn voltages are predicted. Therefore, the application of magnetic self-insulation to avoid coil inter-turn break-down is considered. Also, we have analysed the system performance with different load conditions. 相似文献
3.
D. V. Orlinskii 《Atomic Energy》1965,18(4):415-421
The interaction of a straight plasma pinch (current up to 4 kA) with a high-frequency (~1.3 Me/see) quadrupolar magnetic field (~100 Oe) is studied by very simple methods.Translated from Atomnaya Énergiya, Vol. 18, No. 4, pp. 323–329, April, 1965 相似文献
4.
Modification of exposure conditions downstream in the diffusion chamber has been performed in helicon antenna-excited helium plasma by adjusting the magnetic field(intensity and geometry).In the inductively coupled mode(H mode), a reduction in ion and heat fluxes is found with increasing magnetic field intensity, which is further explained by the more highly magnetized ions off-axis around the last magnetic field lines(LMFL). However, in helicon wave mode(W mode), the increase in magnetic field intensity can dramatically increase the ion and heat fluxes.Moreover, the effect of LMFL geometry on exposure conditions is investigated. In H mode with contracting LMFL, off-axis peaks of both plasma density and electron temperature profiles shift radially inwards, bringing about a beam with better radial uniformity and higher ion and heat fluxes. In W mode, although higher ion and heat fluxes can be achieved with suppressed plasma cross-field diffusion under converging LMFL, the poor radial uniformity and a small beam diameter will limit the size of samples suitable for plasma irradiation experiments. 相似文献
5.
This paper presents a composite magneto hydrodynamics(MHD) method to control the lowtemperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine.The principle of plasma flow with MHD control is analyzed.The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model.A test rig with plasma flow controlled by MHD is established.An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow.Finally,plasma plume deflection is obtained in different working conditions.The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation.A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K.The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity.It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection. 相似文献
6.
É. A. Azizov Yu. A. Alekseev N. N. Brevnov E. P. Velikhov I. A. Glebov V. A. Glukhikh V. F. Demichev B. B. Kadomtsev B. G. Karasev V. A. Krylov B. A. Larionov I. F. Malyshev I. V. Mozin N. A. Monoszon V. I. Odintsov V. D. Pis'mennyi S. V. Putvinskii F. G. Rutberg Yu. V. Spirchenko A. M. Stolov V. A. Chuyanov 《Atomic Energy》1982,52(2):112-117
7.
G. Chitarin P. Agostinetti H.P.L. de Esch D. Marcuzzi N. Marconato E. Sartori G. Serianni P. Sonato P. Veltri P. Zaccaria 《Fusion Engineering and Design》2013,88(6-8):507-511
MITICA (Megavolt ITER Injector Concept Advancement) is a test facility for the development of a full-size heating and current drive neutral beam injectors for the ITER Tokamak reactor. The optimized electrostatic and magnetic configuration has been defined by means of an iterative optimization involving all the physics and the engineering aspects. The acceleration grids have been designed considering optical performances and mechanical constraints related to embedded magnets, to cooling channels, to the grid stiffness and manufacturability. A combination of “local” vertical field and horizontal “long range” field has been found to be the most effective set-up for ion extraction, beam focusing and minimization and equalization of thermo-mechanical loads and minimal number of electrons exiting the accelerator. 相似文献
8.
Xinhao JIANG 《等离子体科学和技术》2022,24(1):15105
Accurate tokamak plasma equilibrium solution in flux coordinates is crucial for many stability and transport studies. Different approaches for dealing with singularities in solving the nonlinear Grad–Shafranov (GS) equation in flux coordinates or also known as straight field line coordinates are proposed in this paper. The GS equation is solved by iterating the position of grids directly in flux coordinates, and hence, no additional errors are introduced due to mapping process for a convergent solution. The singularity at magnetic axis in flux coordinates is removed by using a novel coordinate transform technique. Different from other techniques previously developed, no assumption in boundary condition at magnetic axis is used. This is consistent with the fact that there is no physical boundary at the magnetic axis. A flux coordinate system with poloidal coordinate chosen as the geometric poloidal angle is proposed. It conquers the difficulty in no definition of poloidal coordinate in flux coordinates at separatrix because of the singularity at x-point(s) in a divertor configuration. It also simplifies the process for computing poloidal flux coordinate during the iteration for solving the nonlinear GS equation. Non-uniform grids can be applied in both radial and poloidal coordinates, which allows it to increase the spacial resolution near x-point(s) in a divertor configuration. Based on the model proposed in this paper, a new Flux coordinates based EQuilibrium solver (FEQ) in tokamaks is developed. The numerical solutions from this code agree well with both the analytic Solov'ev solution and the numerical one from the EFIT code for a divertor configuration in the EAST tokamak. This code can be applied for simulating different equilibria with prescribed shape, pressure and current profiles, i.e. including both limiter and divertor configurations, positive triangularity and negative triangularity, different β, arbitrary magnetic shear profile etc. It provides a powerful and convenient fixed-boundary inverse equilibrium solver including both magnetic axis and separatrix in the solution for tokamak researches. 相似文献
9.
Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry,focusing on the effects of Landau damping,equilibrium magnetic shear (EMS),and pressure flattening.It is shown that the magnetic island may enhance the Landau damping of the system by inducing the radial magnetic field.Moreover,the radial eigenmode numbers of most MITG poloidal harmonics are increased by the magnetic island so that the MITG mode is destabilized in the low EMS regime.In addition,the pressure profile flattening effect inside a magnetic island hardly affects the growth of the whole MITG mode,while it has different local effects near the O-point and the X-point regions.In comparison with the non-zero-order perturbations,only the quasi-linear flattening effect due to the zonal pressure is the effective component to impact the growth rate of the mode. 相似文献
10.
Zhaoyu WANG Hong LI Chao ZHONG Yanlin HU Yongjie DING Liqiu WEI Daren YU 《等离子体科学和技术》2021,23(10):104008-80
To date,the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied.Hence,an experimental study was conducted on a 1.35 kW magnetically shielded Hall thruster with a xenon propellant.Different magnetic field lines were chosen,and corresponding tangentially matched channel walls were manufactured and utilized.The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously.When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength,the channel wall can be adequately protected from ion sputtering.When the magnetic field lines have a strength ratio of 12%-20%,the thruster performance is high.These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters. 相似文献
11.
12.
The preparation for an experimental soft x-ray tomography study on the Heliotron J (H-J) machine is carried out, with the objectives of evaluating the capability of the current soft x-ray tomographic system in terms of the identification of different mode structures and their poloidal rotation, and the axis shift with different plasma and machine parameters, and fixing the physics goals for the experimental study. These preparations were carried out via a simulated soft x-ray data set arising from different plasma conditions, such as magnetic islands, low beta and high beta. Soft x-ray tomography (SXT) is performed by the discrete pixel method including singular value decomposition and Phillips–Tikhonov regularization, to obtain clear and smooth images. The H-J soft x-ray tomography results from simulated soft x-rays for the equilibrium H-J plasma sensed the magnetic axis shift clearly and an estimate was also achieved. Successful reconstruction for mode structure m=1/n=1 was obtained along with the realization of the poloidal rotation of the structure. The reconstruction for the m=2/n=1 mode was not very clear for the current soft x-ray diagnostic design. Effective mode identification was not possible due to the lack of measurements. The SXT from the current soft x-ray diagnostic on H-J, the magnetic axis shift can be estimated and the m=1/n=1 mode can be studied. Study of higher poloidal modes is difficult with the current design. 相似文献
13.
Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived (∼300 μs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and low-inductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil, magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament's azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and I–V characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of plasma flow via oscillograms of electron and ion beam currents. 相似文献
14.
Zhonghe JIANG 《等离子体科学和技术》2022,24(12):124014
The three-dimensional (3D) magnetic configuration system in the J-TEXT tokamak has featured in many experimental studies. The system mainly consists of three subsystems: the static resonant magnetic perturbation (SRMP) system, the dynamic resonant magnetic perturbation (DRMP) system and the helical coil system. The SRMP coil system consist of two kinds of coils, i.e. three six-loop coils and two five-loop coils. It can suppress tearing modes with a moderate strength, and may also cause mode locking with larger amplitude. The DRMP coil system consists of 12 single-turn saddle coils (DRMP1) and 12 double-turn saddle coils (DRMP2). Its magnetic field can be rotated at a few kHz, leading to either acceleration or deceleration of the tearing mode velocity and the plasma rotation. The helical coil system consists of two closed coils, and is currently under construction to provide external rotational transform in J-TEXT. The 3D magnetic configuration system can suppress tearing modes, preventing and avoiding the occurrence of major disruption. 相似文献
15.
Lazar I. Skundric 《Nuclear Engineering and Design》1978,46(2):409-416
In this paper the subjects of loads, load combinations, and behavior limits of metal containments are discussed, with all such discussions fully recognizing the prime importance of containment system safety. The load probabilities associated with both individual loads and load categories are dealt with and are used as a basis for a rational evaluation of those stresses allowed under ASME Code Section III Division 1 and other applicable USNRC Regulatory Guides. In addition, the author presents some current observations on the design of local stress areas and the limits of buckling behavior. 相似文献
16.
《等离子体科学和技术》2019,21(12):125102
The effect of resonant magnetic perturbation(RMP) on boundary turbulence and transport in J-TEXT plasma is experimentally investigated.Edge plasma fluctuations in discharges with and without the(m/n=3/1) RMP currents are diagnosed by using Langmuir probe arrays.It was found that fluctuations in the edge and scrape-off layer(SOL) regions decrease with the application of a 6 kA RMP.The broadband turbulence at the radial location of ρ~0.9 which has a characteristic frequency of 40-150 kHz was strongly suppressed when applying RMP,as was the radial turbulent particle flux and blob transport in the near-SOL region.These experimental findings make RMP a promising method of suppressing and controlling turbulence and particle transport in a plasma boundary. 相似文献
17.
Shaoyu LU 《等离子体科学和技术》2023,25(3):35002-27
Langevin dynamical simulations are performed to determine the bulk modulus in twodimensional(2D) dusty plasmas from uniform periodic radial compressions. The bulk modulus is calculated directly from its physical definition of the ratio of the internal pressure/stress to the volume strain. Under various conditions, the bulk moduli obtained agree with the previous theoretical derivations from completely different approaches. It is found that the bulk moduli of2D Yukawa solids and liquids are almos... 相似文献
18.
In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A particular emphasis was given to the plume dynamics(shape,size) with the combined effects of ambient gas pressures and an external magnetic field.Free expansion,sharpening effect,and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures.Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes,such as plume splitting,elliptical geometry changes,radial expansion,and plume confinement.Furthermore,the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures. 相似文献
19.
O. Öztürk S. Okur J.P. Riviere 《Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms》2009,267(8-9):1540-1545
In this study, an FeCrNi alloy (316L stainless steel disc) was nitrided in a low-pressure R.F. plasma at 430 °C for 72 min under a gas mixture of 60% N2–40% H2. Structural, compositional and magnetic properties of the plasma nitrided layer was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and magnetic force microscopy (MFM). The magnetic behaviour of the nitrided layer was also investigated with a vibrating sample magnetometer (VSM). Combined X-ray diffraction, cross-sectional SEM, AFM and MFM, as well as VSM analyses provide strong evidence for the formation of the γN phase, [γN-(Fe, Cr, Ni)], with mainly ferromagnetic characteristics. The uniform nature of the γN layer is clearly demonstrated by the XRD, cross-sectional SEM and AFM analyses. Based on the AFM and SEM data, the thickness of the γN layer is found to be ~6 μm. According to the MFM and VSM analyses, ferromagnetism in the γN layer is revealed by the observation of stripe domain structures and the hysteresis loops. The cross-sectional MFM results demonstrate the ferromagnetic γN phase distributed across the plasma nitrided layer. The MFM images show variation in the size and form of the magnetic domains from one grain to another. 相似文献
20.
RANA Mukhtar Ahmed 《核技术(英文版)》2009,20(3):188-192
Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. 相似文献