共查询到20条相似文献,搜索用时 406 毫秒
1.
针对遥感图像背景复杂、目标普遍比较小且呈多尺度分布所导致的目标检测精度较低的问题,提出了一种改进YOLOv6的遥感图像目标检测算法。在骨干网络引入一种坐标注意力模块,以提高复杂背景下模型的特征提取能力和目标定位能力。提出一种上下文增强模块,使模型获取丰富的上下文信息,从而提升模型提取多尺度目标细节信息的能力。为了实现不同尺度特征的自适应融合,通过在颈网络引入一种自适应空间特征融合,提升了多尺度目标尤其是小目标的检测精度。将所提改进算法在遥感图像公开数据集DOTA-v1.0上进行训练并测试,实验结果表明,改进算法的收敛速度与收敛精度均优于原算法,其中AP值达到了54.6%,相比原算法提高了1.4个百分点,同时相比于一些其他目前先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性。 相似文献
2.
针对遥感图像中背景复杂目标、车辆小导致的成像模糊的目标漏检问题,提出一种基于YOLOv5s的改进模型。改进模型设计一种新的主干网络结构:改进模型的主干特征提取选用RepVGG网络,同时在主干网络中加入注意力机制CoordAttention来提高模型小目标的感知能力。增加多尺度特征融合,提高改进模型对于小目标的检测精度,边框回归的损失函数选择使用DIoU,帮助改进模型实现更加精准定位。实验结果表明,改进后的YOLOv5模型在遥感图像的目标检测,相较于原始模型在小目标车辆中检测精度提升5.3个百分点,与Faster R-CNN相比mAP提升16.88个百分点。改进后的模型与主流的检测算法相比能有较大的检测精度提升,相较于原始的YOLOv5s模型在遥感图像小车辆检测有更好的检测精度。 相似文献
3.
针对遥感图像中背景复杂度高、目标尺寸多样和小目标存在过多所导致的目标检测精度较低的问题,提出一种改进YOLOv5的遥感图像目标检测算法。该算法在主干网络引入通道-全局注意力机制(CGAM)以增强对不同尺度目标的特征提取能力和抑制冗余信息的干扰。引入密集上采样卷积(DUC)模块扩张低分辨率卷积特征图,有效增强不同卷积特征图的融合效果。将改进算法应用于公开遥感数据集RSOD中,改进YOLOv5算法平均精度AP值达到78.5%,较原算法提升了3.1个百分点。实验结果证明,改进后的算法能有效提高遥感图像目标检测精度。 相似文献
4.
针对遥感影像目标检测中复杂背景的干扰,小目标检测效果差等问题,提出一种改进YOLOv5(you only look once v5)的遥感影像目标检测模型。针对卷积神经网络下采样导致的特征图中包含的小目标信息较少或消失的问题,引入特征复用以增加特征图中的小目标特征信息;在特征融合阶段时使用EMFFN(efficient multi-scale feature fusion network)的特征融合网络代替原有的PANet(path aggregation network),通过添加跳跃连接以及跨层连接高效融合不同尺度的特征图信息;为了应对复杂背景带来的检测效果变差的问题,提出了一种包含通道与像素的双向特征注意力机制(bidirectional feature attention mechanism,BFAM),以提高模型在复杂背景下的检测效果。实验结果表明,改进后的YOLOv5模型在DIOR数据集与RSOD数据集中分别取得了87.8%和96.6%的检测精度,相较原算法分别提高5.2和1.6个百分点,有效提高了复杂背景下的小目标检测精度。 相似文献
5.
针对遥感图像目标检测算法复杂背景下目标检测精度低、小目标特征丢失的问题,提出一种改进YOLOX的遥感图像目标检测算法MYOLOX(modified YOLOX)。该算法在主干网络引入残差金字塔卷积模块(residual pyramid convolution module,RPCM)增强浅层特征图中的空间位置等细节信息,缓解下采样过程中的特征丢失。引入增强跨阶段局部块(improved cross stage partial block,ICSP)提取丰富的上下文信息并抑制噪声干扰,减少复杂背景及噪声干扰带来误检。将改进算法应用于使用DIOR数据集对NWPU VHR-10数据集扩充后数据集和SSDD数据集, MYOLOX算法检测平均精度均值(mean average precision,mAP)分别达到了80.8%和94.4%,较原算法提升了4.1和4.5个百分点。实验结果证明,改进后的算法能够明显提高遥感图像目标检测精度。 相似文献
6.
针对遥感图像中背景复杂度高、目标尺寸多样所导致的目标检测精度低的问题,提出一种基于改进 YOLOv5的遥感图像目标检测算法。该算法将具有Transformer风格的ConvNeXt网络作为主干网络,以克服卷积神经网络(CNN)结构的局限性,捕获更多全局信息。引入 SimAM 注意力机制在不增加网络参数的情况下,推断出特征图的3D注意力权值,提高网络的稳定性以及抗干扰能力。同时采用全局显式集中调节方案的集中特征金字塔(CFP),捕获全局长距离依赖关系以及遥感图像的局部关键区域信息。将本文提出的算法在 RSOD 数据集上进行消融实验,结果表明,本文提出的算法能够显著提高遥感图像目标检测的平均准确率。 相似文献
7.
针对YOLOv5在遥感图像目标检测中未能考虑到遥感图像背景复杂、检测目标较小且图像中目标语义信息占比过低导致的检测效果不佳和易出现误检漏检等问题,提出了一种改进YOLOv5的遥感图像目标检测方法。将轻量级的通道注意力机制引入到原始YOLOv5的特征提取和特征融合网络的C3模块中,以提升网络局部特征捕获与融合能力;强化对遥感图像的多尺度特征表达能力,通过增加一个融合浅层语义信息的细粒度检测层来提高对小目标的检测效果;使用Copy-Paste数据增强方法来丰富训练样本数量,在不增加模型计算量的情况下可进一步解决遥感图像背景信息占比过高而目标区域占比过低的问题。实验结果表明,改进YOLOv5在公开的DOTA和DIOR遥感图像数据集上mAP结果分别达到0.757和0.759。该方法较原始YOLOv5可提高0.017和0.059,相比于其他典型遥感目标检测方法在精度上也有所提升,证明了改进YOLOv5方法的有效性。 相似文献
8.
针对遥感图像中目标尺度变化大和背景复杂导致检测精度低的问题,设计了一种改进YOLOv7目标检测算法.首先,为了缓解复杂背景对检测器的干扰,设计了一个注意力引导的高效层聚合网络(ALAN),以优化多路径网络使其更聚焦前景目标而降低背景的影响;其次,为了降低目标尺度变化大对检测精度的影响,设计了一种注意力多尺度特征增强(AMSFE)模块,用于扩展主干网络输出特征的感受野,以加强网络对尺度变化大目标的特征表征能力;最后,引入旋转边界框损失函数,以获取任意朝向物体的精确位置信息.在DIOR-R数据集上的实验结果表明,该算法mAP达到了 64.51%,相比于基线原始YOLOv7 算法提高了 3.43%,且优于其他同类算法,能够适应遥感图像中多尺度和复杂背景的目标检测任务. 相似文献
9.
目标检测是计算机视觉领域的一个重要应用,针对光学遥感影像的目标检测任务也是当下的研究热点之一。现阶段科技进步的同时带来了一系列环境问题,环境保护已经成为当下值得关注的重点问题。水坝的建设是影响全球环境保护以及资源利用的一个重要因素,对水坝进行监测可以为环境保护工作提供参考依据。为了环境保护后续工作的开展,分析水坝在图像中的位置,该文针对高分辨率光学遥感影像中的水坝目标检测方法进行研究,对比了深度学习三个阶段较为典型的目标检测模型,根据实验结果选用精度较高的YOLOv5通用目标检测模型,并根据遥感图像背景复杂的特性结合CBAM注意力机制提高网络对图像中水坝目标的重点关注。在DIOR光学遥感目标检测数据集中提取含有水坝目标的图像并验证模型精度,实验表明YOLOv5-CBAM在并不显著增加模型大小的情况下比YOLOv5运算能力强,并且AP50可以达到86.4%,比仅使用YOLOv5的模型AP50提高了3.2百分点。 相似文献
10.
无人机(Unmanned Aerial Vehicle,UAV)遥感图像具有成像距离远、分辨率高和目标密集等特点。本文旨在开发一种基于深度神经网络和注意力机制的学习模型,以改善无人机遥感视角下微小目标检测的性能。本研究改进了YOLOv5,并提出了一种名为YOLOv5-SATC的新无人机遥感图像微小目标检测算法。实验结果表明,该算法在NWPU数据集上优于其他主流目标检测方法。 相似文献
11.
作为一个多任务的学习过程,目标检测相较于分类网络需要更好的特征.基于多尺度特征对不同尺度的目标进行预测的检测器性能已经大大超过了基于单一尺度特征的检测器.同时,特征金字塔结构被用于构建所有尺度的高级语义特征图,从而进一步提高了检测器的性能.但是,这样的特征图没有充分考虑到上下文信息对语义的补充作用.在SSD基准网络的基... 相似文献
12.
由于地物信息的复杂性及变化检测数据的多元性,遥感图像特征提取的充分性和有效性难以得到保证,导致变化检测方法获取的检测结果可靠性较低。虽然卷积神经网络(CNN)凭借有效提取语义特征的优势,被广泛应用于遥感领域的变化检测之中,但卷积操作固有的局部性导致感受野受限,无法捕获时空上的全局信息以至于特征空间对中远距离依赖关系的建模受限。为捕获远距离的语义依赖,提取深层全局语义特征,设计了一种基于Swin Transformer的多尺度特征融合网络SwinChangeNet。首先,SwinChangeNet采用孪生的多级Swin Transformer特征编码器进行远距离上下文建模;其次,编码器中引入特征差异提取模块,计算不同尺度下变化前后的多级特征差异,再通过自适应融合层将多尺度特征图进行融合;最后,引入残差连接和通道注意力机制对融合后的特征信息进行解码,从而生成完整准确的变化图。在CDD和CD_Data_GZ 2个公开数据集上分别与7种经典和前沿变化检测方法进行比较,CDD数据集中本文模型的性能最优,相比于性能第二的模型,F1分数提高了1.11%,精确率提高了2.38%。CD_Data_GZ数据集中本文模型的性能最优,相比于性能第二的模型,F1分数、精确率和召回率分别提高了4.78%,4.32%,4.09%,提升幅度较大。对比实验结果证明了该模型具有更好的检测效果。在消融实验中也证实了模型中各个改进模块的稳定性和有效性。本文模型针对遥感图像变化检测任务,引入了Swin Transformer结构,使网络可以对遥感图像的局部特征和全局特征进行更有效地编码,让检测结果更加准确,同时保证网络在地物要素种类繁多的数据集上容易收敛。 相似文献
13.
航空遥感图像目标检测旨在定位和识别遥感图像中感兴趣的目标,是航空遥感图像智能解译的关键技术,在情报侦察、灾害救援和资源勘探等领域具有重要应用价值。然而由于航空遥感图像具有尺寸大、目标小且密集、目标呈任意角度分布、目标易被遮挡、目标类别不均衡以及背景复杂等诸多特点,航空遥感图像目标检测目前仍然是极具挑战的任务。基于深度卷积神经网络的航空遥感图像目标检测方法因具有精度高、处理速度快等优点,受到了越来越多的关注。为推进基于深度学习的航空遥感图像目标检测技术的发展,本文对当前主流遥感图像目标检测方法,特别是2020—2022年提出的检测方法,进行了系统梳理和总结。首先梳理了基于深度学习目标检测方法的研究发展演化过程,然后对基于卷积神经网络和基于Transformer目标检测方法中的代表性算法进行分析总结,再后针对不同遥感图象应用场景的改进方法思路进行归纳,分析了典型算法的思路和特点,介绍了现有的公开航空遥感图像目标检测数据集,给出了典型算法的实验比较结果,最后给出现阶段航空遥感图像目标检测研究中所存在的问题,并对未来研究及发展趋势进行了展望。 相似文献
14.
Semantic segmentation of remote sensing images plays a significant role in many applications such as urban planning and ecological protection, but its semantic segmentation suffers from large intra-category variation and large differences in the scale of objects, so it is prone to misclassification. To cope with this issue, an embedded channel's categorical attention module (ECCA) is proposed to extract contextual information from the perspective of categories, and a channel attention module is embedded in it to achieve multiple contextual information extraction. Combined with the remote sensing atrous spatial pyramid pooling module (RSASPP), which is composed of atrous convolution with different expansion rates, feature fusion of objects at different scales is achieved. The refinement module (RM) is added for boundary refinement to achieve finer segmentation. Experiments are conducted on the WHDLD dataset to prove the effectiveness of the method. 相似文献
15.
针对遥感建筑物图像中建筑物大小不一、边缘模糊导致精度不高的问题,提出一种双分支并行融合注意力机制的网络模型TC-UNet++。针对卷积神经网络擅长提取局部特征,难以捕获全局信息的特点,引入Transformer结构以解决全局信息丢失的问题。对于两种结构的特征维度和通道数不匹配的问题,设计一种TC(Transformer to CNN)模块以交互的方式融合不同分辨率下局部与全局特征。引入坐标注意力机制,根据像素在图像中的位置信息,定位和识别建筑物。实验结果表明,TC-UNet++在WHU数据集上交互比、准确率、总精度分别达到了93.1%、95.9%、98.8%,在不显著增加参数的情况下,展现出良好的有效性。 相似文献
16.
当前目标检测算法对小目标检测存在特征信息易丢失的问题,利用网络处理高分辨率特征图数据可以缓解,但存在语义信息不足和计算负担大的缺点。为弥补这些缺点,提出一种有效处理高分辨率特征图、多深度子网并行连接的特征提取网络。构建输入图像金字塔,搭建多深度分支子网并行连接的结构,使用浅层网络处理图像金字塔中高分辨率特征图,深层网络处理低分辨率特征图,多分支同时运行并在中间位置进行两次特征融合,充分结合高分辨率特征信息和低分辨率语义信息;使用融合因子构建对小目标针对性强的多尺度特征融合结构,增强对小目标检测能力;使用注意力机制进一步提高特征提取能力。在公开数据集AI-TOD上进行实验表明,所设计的特征提取网络相较于其他常用特征提取网络对小目标的检测能力更强,在two-stage经典模型Faster-RCNN、one-stage经典模型SSD、YOLOv3以及anchor-free经典模型CenterNet上替换上原主干网络,检测平均精度mAP与原来相比分别提升了2.7、3.4、3.3、1.7个百分点,证明了所提网络结构的适用性和有效性。 相似文献
17.
航拍图像目标检测对于高效解译航拍图像,并用于地图绘制、资源普查、城乡规划等领域有着重大现实意义。针对无人机航拍图像中的物体尺度变化大、易受到背景干扰和微小目标容易错检漏检的问题,提出一种基于YOLOv7进行改进的航拍图像目标检测算法(AirYOLOv7)。AirYOLOv7通过在原网络的特征提取阶段结合三维注意力机制,在特征融合阶段结合通道注意力机制,以帮助模型更好地聚焦于图像中的关键信息。考虑到航拍图像中存在许多微小物体,算法额外增加了一个用于检测微小物体的预测头,并在每个预测头前引入C3STB,以增强算法对不同尺度目标的检测能力。针对IoU损失对微小物体的位置偏差非常敏感,通过在原边框回归损失中引入Wasserstein距离来衡量微小物体之间的差异,以提高算法对微小物体的检测能力。实验结果表明,AirYOLOv7在DOTA和VisDrone这两个公开的光学航拍数据集上的mAP分别达到78.65%和51.79%,相较于原始的YOLOv7分别提高了1.92个百分点和2.28个百分点,证明了改进方法在光学航拍图像上的有效性。 相似文献
18.
针对目前文本检测中小尺度文本和长文本检测精度低的问题,提出了一种基于多尺度注意力特征融合的场景文本检测算法.该方法以Mask R-CNN为基线模型,引入Swin_Transformer作为骨干网络提取底层特征.在特征金字塔(feature pyramid networks,FPN)中,通过将多尺度注意力热图与底层特征通过横向连接相融合,使检测器的不同层级专注于特定尺度的目标,并利用相邻层注意力热图之间的关系实现了FPN结构中的纵向特征共享,避免了不同层之间梯度计算的不一致性问题.实验结果表明:在ICDAR2015数据集上,该方法的准确率、召回率和F值分别达到了88.3%、83.07%和85.61%,在CTW1500和Total-Text弯曲文本数据集上相较现有方法均有良好表现. 相似文献
19.
针对大场景遥感图像内容复杂,并且具有目标种类较多、尺度不一、方向多变等特点,导致遥感图像中目标多类多尺度多方向的问题,提出一种基于多尺度注意力特征金字塔网络(MAFPN)以及滑动顶点回归(GVR)机制的遥感图像目标检测方法.首先利用骨干网络提取多层特征作为MAFPN的输入,MAFPN结合特征融合和注意力机制,在融合多个尺度的特征映射的基础上使用通道域注意力和空间域注意力机制来抑制噪声,增强有效特征复用,提高网络对目标多尺度特征的自适应性;将MAFPN输出的融合特征图输入区域建议网络(RPN)生成感兴趣区域,然后将其送入分类/回归网络;在分类/回归网络中使用GVR机制在预测水平框的基础上增加4个顶点偏移比例参数和旋转因子,将水平框转换为旋转框,以减少边框中冗余区域,使预测得到的旋转边框更贴合目标.在DOTA公开数据集上与多种基于卷积神经网络的经典检测算法进行对比的实验结果表明,该方法的平均检测精度得到显著提高,能够更加准确地检测多个尺度以及多个方向的目标,实现了多尺度目标的鲁棒性检测. 相似文献
20.
目标检测是计算机视觉领域中的一项重要任务,旨在从图像或视频中准确识别和定位感兴趣的目标物体.本文提出了一种改进的目标检测算法,通过增加特征融合、优化编码器层间传递方式和设计随机跳跃保持方法,解决一般Transformer模型在目标检测任务中存在的局限性.针对Transformer视觉模型由于计算量限制只应用一层特征,导致目标对象信息感知不足的问题,利用卷积注意力机制实现了多尺度特征的有效融合,提高了对目标的识别和定位能力.通过优化编码器的层间传递方式,使得每层编码器有效地传递和学习更多的信息,减少层间信息的丢失.还针对解码器中间阶段预测优于最终阶段的问题,设计了随机跳跃保持方法,提高了模型的预测准确性和稳定性.实验结果表明,改进方法在目标检测任务中取得了显著的性能提升,在COCO2017 数据集上,模型的平均精度AP达到了 42.3%,小目标的平均精度提高了 2.2%;在PASCAL VOC2007数据集上,模型的平均精度AP提高了 1.4%,小目标的平均精度提高了 2.4%. 相似文献