首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用35 t电弧炉-AOD脱碳-LF精炼-模铸工艺制备了17-7PH沉淀硬化不锈钢自耗电极,并通过气体保护电渣炉重熔得到了2 t重的电渣锭。利用ASPEX扫描电镜分析了电渣重熔前后17-7PH钢中夹杂物数量、尺寸、成分的变化规律,并采用SEM-EDS进一步观察夹杂物的形貌及组成。研究结果发现,电渣重熔后,O含量由6.6×10-6降至5.7×10-6,N含量由200×10-6降至180×10-6。重熔前后夹杂物的类型没有变化,重熔后总的夹杂物数量大幅减少,特别是大颗粒夹杂物的数量明显减少、尺寸减小。电渣锭中总的夹杂物以AlN夹杂物为主,其尺寸较大、数量最多。为了提高17-7PH钢电渣锭的洁净度,应尽可能减少自耗电极中的N含量,以减少电渣重熔过程AlN夹杂物的生成量。  相似文献   

2.
试验和分析了全封闭气罩氩气保护电渣重熔与常规大气下电渣重熔铁路用G20CrNi2MoA渗碳轴承钢(/%:0.19C、0.49Cr、1.75Ni、0.23Mo、0.071Al)的冶金效果。结果表明,氩气保护电渣重熔锭Si和Mn的烧损量(3%~12%和4%~10%)低于常规电渣重熔锭Si和Mn的烧损量(15%~18%和7%~10%);当G20CrNi2MoA钢电极的氧含量为10×10-6时,氩气保护电渣锭的氧含量(15×10-6)低于常规电渣锭的氧含量(21.3×10-6);氩气保护电渣锭的冶金质量明显优于未经气体保护的常规电渣锭。  相似文献   

3.
试验了15kg电渣炉在CaF2-Al2O3-CaO-SiO2渣系下,氩气流量25L/min的全氩气保护和大气重熔低合金钢(电极含0.030%[Als]、0.29%[Si]、20×10-6 T[O])Al、Si的烧损和夹杂物的变化。结果表明,大气重熔时,电渣锭T[O]增加至36×10-6, [Als]、[Si]分别降至0.011%和0.17%;氩气保护重熔时,电渣锭T[O]为24×10-6,[Als]、[Si]分别为0.024%和0.28%;与大气重熔相比,氩气保护重熔锭中夹杂物尺寸小,分布均匀、弥散。  相似文献   

4.
采用1 t 3相有衬电渣炉-底吹氩精炼-铸φ90 mm棒-100 kg电渣重熔工艺流程成功地生产出满足生产φ0.018 mm超细丝洁净度要求的316L不锈钢原料(/%:≤0.03C、≤1.0Si、≤2.0Mn、≤0.035P、≤0.030S、16~18 Cr、12~15Ni、2~3Mo)。通过渣料为(/%)25CaF2-25Al2O3-50CaO,3根纯铁自耗电极的熔炼过程逐步加铬铁、镍板和硅铁,获得要求的成分,并用AlSiMn合金和SiCa粉脱氧,底吹氩气搅拌,直接浇铸成φ90 mm铸棒,再经φ160mm电渣重熔炉精炼成100 kg锭。结果表明,电渣锭中总氧含量为(15~20)×10-6,平均夹杂物含量为16.2个/mm2,95%夹杂物尺寸小于5μm,没有发现大于10μm的夹杂物,可满足生产超细不锈钢丝的要求。  相似文献   

5.
通过实验研究SiCa(Si71%-Ca28%)和SiCaBa(Si52%-Ca14%-Ba14%-Al1.82%)合金对304N不锈钢脱氧和夹杂物改性及总氧含量的影响。加入SiCa或SiCaBa合金后,夹杂物中MnO消失,并改性为CaO-Al2O3-SiO2-MgO-(BaO)体系,塑性增强。SiCa处理相比于无脱氧剂处理,夹杂物数密度由350个/mm2降低至170个/mm2,尺寸由0.8μm增加至2.7μm,面积占比为0.05%,但全氧含量并未明显降低。SiCaBa合金处理后夹杂物熔点进一步降低,塑性进一步增强。夹杂物数密度降低至155个/mm2,尺寸增加至3μm,面积占比为0.049%。全氧含量进一步降低,由111×10-6降至36×10-6。此外,在加入精炼渣15 min后加入SiCaBa合金,对比30 min后加入的试验结果表明:夹杂物的数量密度进一步下降到70个/mm2,直径3.4...  相似文献   

6.
天津钢管集团有限公司炼钢厂采用EAF全程泡沫渣埋弧操作、EBT出钢合金化、LF复合精炼渣精炼、VD处理后喂硅钙线、连铸全程保护浇铸生产高压锅炉钢12Cr1MoVG.通过系统取样、示踪剂追踪、综合分析等方法,对LF处理前后、中间包钢水和连铸坯中总氧(T[O])、显微夹杂及大型夹杂物的数量及变化情况进行了全面研究.结果表明,LF/VD精炼后钢液T[O]平均为15×10-6,中间包T[O]为17×10-6,铸坯为18×10-6~24×10-6;铸坯中的显微夹杂物数量是3.53mm-2,主要为球形钙铝酸盐、硅铝酸盐和铝酸盐与硫化物的复合夹杂,90%以上的夹杂物尺寸小于10μm;铸坯中大型夹杂物有铁铝硅酸盐、钙镁硅酸盐等.低倍组织均匀细致,表面质量良好,轧管各项技术指标均达到GB5310要求.  相似文献   

7.
针对NiCrMoV合金钢电渣重熔过程中Ti元素的烧损严重问题,通过实验室实验和热力学计算研究了不同渣系对电渣锭化学成分及夹杂物数量、成分和尺寸分布的影响规律。结果表明,电渣重熔后电渣锭中总氧含量明显增加,由自耗电极的15.1×10-6增加至(31.3~42.1)×10-6,夹杂物数密度增加至6.54~15.95个/mm2,而氮含量变化不大;采用渣系70%CaF2-30%Al2O3和55%CaF2-25%Al2O3-17%CaO-3%MgO时,电渣锭中Ti元素的烧损严重,夹杂物以Al2O3为主,渣相中添加一定量的TiO2能较好地控制重熔后Ti的烧损,夹杂物类型主要由Al2O3、Al2O3-CaO-TiO2、其他氧化物夹杂...  相似文献   

8.
从冶金效果、设备性能、工艺条件等方面对LF-RH与RH-LF二次精炼法进行了全面的研究,分析了两种工艺下RH真空处理的特点,对两种工艺下管线钢中有害元素及夹杂物的控制进行了讨论.LF-RH与RH-LF工艺下生产的X70管线钢铸坯中的T[O]平均为14×10-6和19×10-6,显微夹杂物个数分别为2.48个/mm2和2.62个/mm2,达到很高的洁净度水平.LF-RH工艺铸坯中氮平均为53×10-6,RH-LF工艺条件下铸坯氮含量为平均38×10-6,为以后生产更高质量的管线钢积累了经验.  相似文献   

9.
采用MoSi2电阻炉在MgO质坩埚内进行了精炼渣成分(%:47~64CaO、13~23SiO2、15~25Al2O3、5~10MgO、0~8CaF2;CaO/SiO2=2.0~4.5)对0.95%C-1.50%Cr GCr15轴承钢中氧含量和夹杂物的影响的实验研究。实验中发现,随精炼渣碱度CaO/SiO2由2增加至4.5,钢液中的终点全氧含量由20×10-6降至11×10-6,夹杂物的总数量、总面积和平均半径减小。适当提高Al2O3含量或添加CaF2,减少MgO含量,可以显著提高炉渣吸附夹杂物的速度和能力。低碱度渣精炼的钢液中夹杂物成分含有≥20%SiO2,塑性较好,夹杂物的尺寸为15~20μm。高碱度渣精炼的钢液中典型的夹杂物是氧化铝和铝镁尖晶石等脆性夹杂物,尺寸≤5μm。  相似文献   

10.
通钢65 t Consteel EAF-LF-CC 工艺生产40Cr 钢水洁净度的分析   总被引:1,自引:0,他引:1  
通钢通过65 t Consteel电弧炉-65 t LF-150 mm×150 mm方坯连铸流程生产40Cr合金钢。检验结果表明,通过LF精炼,40Cr钢水中的氧含量由精炼前227×10-6降至35×10-6;而连铸时中间包钢中的氧含量增加至51×10-6,铸坯的氧含量为54×10-6。因此,进一步预防钢水从钢包至中间包及中间包内钢水的二次氧化和去除钢中大型夹杂物,是提高钢水洁净度和降低[O]的关键步骤。  相似文献   

11.
26CrMoNbTiB钢由45 t EAF-LF(VD)-Φ80~180mm管坯HCC流程冶炼。该钢各工序的洁净度试验结果表明,LF-VD后钢中氧含量为(8~18)×10-6,平均夹杂物数量最低为2.31个/mm2,连铸坯平均夹杂物数量为3.66个/mm2,≥50μm大型夹杂物平均含量为4.08 mg/10 kg。加强钢包到中间包长水口的密封保护和采用钢包下渣检测装置,提高中间包容量和采用挡渣墙是进一步提高铸坯洁净度的关键工艺措施。  相似文献   

12.
EAF-LF(VD)-CC工艺生产石油管线钢39Mn2V 纯净度的分析   总被引:3,自引:0,他引:3  
分析和研究了EAF-LF(VD)-CC各工序39Mn2V钢的T[O] 和[N] 以及钢中非金属夹杂物。结 果表明,LF(VD) 后T[O] 为28×10-6,铸坯T[O] 为(8~10)×10-6 ;钢中夹杂物主要为Al₂O₃、MnS、球形铝酸 钙,尺寸≤20 μm。铸坯存在一些80~300 μm 夹杂物,主要来源于二次氧化、耐火材料侵蚀和结晶器卷渣。  相似文献   

13.
洁净度对船板钢的性能具有重要作用.通过对BOF-LF-RH-CC流程生产DH36船板钢各工艺环节系统取样,采用多种分析方法分析夹杂物的形貌、尺寸、数量及组成,系统研究了D36生产过程中洁净度的衍变规律.研究表明,采用合理的优化工艺,BOF-LF-RH-CC生产的DH36钢水高洁净度较高,铸坯平均全氧为17.0×10-6,N为29.0×10-6,显微夹杂物6.8 mm-2,主要为尺寸<5μm的球形氧化物和硫化物复合夹杂,满足高级别船板钢的要求.  相似文献   

14.
研究的0.80%~0.82%C帘线钢的生产流程为80 t:BOF-CAS-LF-VD-150 mm×150 mm CC工艺。通过顶底复吹转炉出钢过程加入300 kg金属锰和200 kg高纯硅进行硅锰复合脱氧,LF过程先造碱度(CaO/SiO2)2.04的精炼渣,再将精炼渣碱度(CaO/SiO2)降至0.86,保持渣中Al2O3含量为~5%,来控制钢中非金属夹杂物的塑性转变。结果表明,铸坯平均总氧含量为16×10-6,氮含量控制在50×10-6左右,CAS(密封吹氩调成分)过程钢中夹杂物主要是MnO-Al2O3-SiO2;LF、VD过程钢中和铸坯中夹杂物主要是CaO-Al2O3-SiO2-MgO系,该类夹杂物尺寸偏小(2~3μm),分布在1 400℃低熔点区域附近。  相似文献   

15.
为达到高铁齿轮钢高洁净度,尤其是单颗粒D类球状夹杂物尺寸≤10μm的目标,开发了电渣工艺生产高铁齿轮用钢18CrNiMo7-6(/%:0.15~0.21C,≤0.40Si,0.50~0.90Mn,1.50~1.80Cr,1.40~1.70Ni,0.25~0.35Mo,≤0.010P,≤0.010S),Ф250 mm钢坯生产工艺流程:EBT电弧炉-LF-VD-模铸5.6 t电极坯-电渣重熔-锻造-退火-检验。采用5.6 t电渣锭,渣系为CaF2∶Al2O3∶CaO∶MgO=65∶20∶10∶5,冶炼过程中熔化率控制在500~550 kg/h,渣量为180~200 kg,采用新渣系后生产高铁齿轮钢的洁净度为[O]≤15×10-6,[H]≤1.0×10-6,P≤0.008%,S≤0.005%,A、B、C、D、DS类非金属夹杂物级别≤1.0级,单颗粒D类球状夹杂物尺寸≤10μm,淬透性、力学性能等均符合要求。  相似文献   

16.
采用ASPEX扫描电镜中的自动特征分析功能研究了交换钢包过程(取样浇次第4、5炉)对IF钢连铸板坯表层的洁净度的影响,且对比研究了交换钢包过程浇铸铸坯(交接坯)与正常浇铸铸坯(正常坯)的表层洁净度.结果表明:正常坯与交接坯中尺寸大于20μm的表层夹杂物可分为三类:(1)簇群状Al2O3(包括气泡+簇群状Al2O3);(2)簇群状TiOx-Al2O3夹杂物;(3)保护渣夹杂物.正常坯表层的大型夹杂物主要为簇群状Al2O3,没有检测到保护渣夹杂物.换包开浇后铸坯总氧质量分数从14×10-6增至17×10-6,交接坯表层检测到较多的第2夹杂物,说明钢包开浇后钢水被轻微氧化.此外,钢包开浇后剧烈的液面波动也导致了保护渣的卷入.在当前工艺下,换包对IF钢铸坯表层洁净度的影响长度约为11m.  相似文献   

17.
采用CFD (Computational Fluid Dynamics) 软件PHOENICS对石家庄钢铁公司合金钢连铸40t中间包流场进行了数值模拟,将影响钢水流动的一道挡墙的中间包结构优化成一挡渣墙一坝结构。应用结果表明,采用优化结构后,轴承钢180mm×220mm铸坯中的平均T[O]由优化前的14.8×10-6降至9.3×10-6,>50μm的夹杂物含量由0.38mg/kg降至0.15mg/kg。  相似文献   

18.
针对邯宝炼钢厂采用"复吹转炉-RH精炼-板坯连铸”工艺生产的IF钢铸坯,通过SLIME法电解萃 取,过滤分离,SEM及EDS等手段,对不同位置铸坯的夹杂物的数量、尺寸、成分及来源进行了系统的分析。研究表明,头坯1.5 m处的全氧、氮含量分别为70 X10-6、47 x 10-6 ,明显高于交接坯和正常坯;头坯2. 5m处夹杂物数量 达22. 1 mg/10 kg,是正常儕坯的27倍;铸坯头坯中夹杂物的主要成分为富含K、Na的SiO2类夹杂,是结晶器保护 渣卷渣所致,夹杂物的尺寸主要在300 μm以内。需优化保护渣成分,粘度增大为(0.5±0.1)Pa・s,提高保护渣 A12O3含量等手段降低卷渣风险。通过增加头尾坯切除量,并进行火焰清理,深冲用钢因铸坯夹杂缺陷造成的热轧 带降级率由0.3% -0.4%降至0.2%以下。  相似文献   

19.
石油套管用钢(/%:0.26~0.29C,0.25~0.35Si,0.40~0.50Mn,≤0.009P,≤0.004S,0.95~1.05Cr,0.09~0.11V,0.02~0.04Al,0.015~0.020Ti,≤0.0060N)的生产流程为铁水预处理-120 t BOF-吹氩-LF-喂CaSi线-RH-合金化-喂CaSi线-软吹氩-Φ220 mm圆坯连铸工艺。通过热力学分析得出钢中N含量超过50×10-6以及工业试验得出生产的圆铸坯中的N含量为67×10-6时,在铸坯中易形成2μm以上的TiN夹杂。通过控制BOF终点[N]≤30×10-6,LF终点[S]≤25×10-6,[O]≤25×10-6,[N]≤35×10-6,RH合金化后终点[N]≤35×10-6,[H]≤1.5×10-6,稳定喂CaSi线速度300~400 m/min,控制中间包[N]≤40×10-6,严格连铸保护浇铸工艺,则铸坯中的N含量≤50×10-6,钢中TiN夹杂数量显著下降,未发现大尺寸TiN夹杂物。  相似文献   

20.
介绍了我国压铸模具钢材料研究和应用新进展。通过研究合金元素对压铸模具材料性能影响,开发出低Si、V及含Ni、Co、W等新型压铸模具钢;通过降低钢中S含量、采用RE改变夹杂形态和优化锻造工艺,模具钢等向性能达到90%以上;比较常规电渣重熔、气保电渣重熔和真空自耗三种工艺生产的压铸材料,钢中N含量分别为150×10-6、90×10-6和≤40×10-6,O含量分别为24×10-6、15×10-6和6×10-6;利用ASPEX Explorer型金属质量分析仪对三种工艺夹杂物指数统计分析,采用真空自耗冶炼的非金属夹杂物数量呈指数减少,并且没有>5μm的非金属夹杂物,模具冲击性能大幅提升,7 mm×10 mm无缺口冲击功可达到450 J;制定了高端压铸模具材料显微组织、无缺口冲击评价指标和规范;随着一体化压铸技术发展,未来模具材料向着大型化、超洁净、高精度和长寿命方向发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号