首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于改进YOLOv4算法的轻量化网络设计与实现   总被引:2,自引:0,他引:2  
在嵌入式设备上进行目标检测时易受能耗和功耗等限制,使得传统目标检测算法效果不佳。为此,对YOLOv4算法进行优化,设计YOLOv4-Mini网络结构,将其特征提取网络由CSPDarkNet53改为MobileNetv3-large并进行INT8量化处理,其中网络结构利用PW和DW卷积操作代替传统卷积操作以大幅减少计算量。采用SE模块为通道施加注意力机制,激活函数层运用h-swish非线性激活函数,在保证精度的情况下降低网络计算量。同时,通过量化感知训练将权重转为INT8类型,以实现模型轻量化,进一步降低网络参数量和计算量,从而在嵌入式设备上完成无人机数据集的目标检测任务。在NVIDIA Jetson Xavier NX设备上进行测试,结果显示,YOLOv4-MobileNetv3网络的mAP为34.3%,FPS为30,YOLOv4-Mini网络的mAP为32.5%,FPS为73,表明YOLOv4-Mini网络能够在低功耗、低能耗的嵌入式设备上完成目标实时检测任务。  相似文献   

2.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

3.
针对基于深度学习的海上船舶目标检测任务中存在检测网络复杂且参数量大、检测实时性差的问题, 提出一种加强特征融合的轻量化YOLOv4算法——MA-YOLOv4. 首先使用MobileNetv3替换主干网络, 引入新的激活函数SiLU并使用深度可分离卷积代替普通3×3卷积降低网络参数量; 其次加入自适应空间特征融合模块加强特征融合; 最后使用MDK-means聚类算法得到适用于船舶目标的锚框, 用Ship7000数据集进行训练和评估. 实验结果表明, 改进算法与YOLOv4相比, 模型参数量降低82%, mAP提高2.57%, FPS提高30帧/s, 能实现对海上船舶的高精度实时检测.  相似文献   

4.
针对当前YOLOv4目标检测算法网络模型庞大、特征提取不充分且易受光线环境影响的缺点,提出了一种优化了特征提取网络和一般卷积块的轻量化YOLOv4-Lite网络模型。使用改进的MobileNetv3替换原有的主干特征提取网络,减小了网络模型的参数量,提高了检测精度。提出了使用深度可分离卷积块代替原网络中的普通卷积块,使得模型的参数量进一步降低。结合了标签平滑、学习率余弦退火衰减算法,新增了SiLU激活函数代替MobileNetv3浅层网络的ReLU激活函数,优化了模型的收敛效果。优化了Mosaic数据增强方法,提升了模型的鲁棒性。在人脸口罩佩戴任务中与原算法相比,牺牲了1.68%的mAP,但在检测效率(FPS)上提升约180%。  相似文献   

5.
基于深度学习的目标检测算法应用于无人机视觉中,会极大提升无人机的场景理解能力,但模型参数量和计算量巨大,难以应用于移动端或嵌入式平台.因此本文提出了一种效果较好的轻量级实时检测模型,采用YOLOv4模型网络作为主要参考模型,使用MobileNet替换主干网络,并通过添加CBAM注意力机制以及Soft-NMS后处理策略来提高模型的准确性.选用PASCAL VOC数据集来测试所提出的轻量级YOLOv4模型,结果显示参数量只有原模型的一半,但速度FPS提升了26.48,精度mAP只下降了0.52%.将所提出的轻量化YOLOv4模型部署Nvidia Jetson TX2低功耗系统以及树莓派上,飞行试验显示在TX2上模型FPS达到了21.8,是原始的YOLOv4的4.74倍,将本算法部署到无人机装载的嵌入式平台上,能够对航拍视野中的车辆目标进行实时识别和定位.  相似文献   

6.
基于遥感目标在密集分布和背景复杂场景中因特征提取和表达能力的不足而存在漏检和检测效果不佳的问题,提出了改进YOLOv4的遥感目标检测算法.对用于检测目标的锚框(anchor)用K-means聚类算法重新聚类来减少网络计算量;改进特征提取网络结构,引入残差连接取缔网络中连续卷积操作来提高密集目标特征提取能力;在特征提取网络中激活函数加入自适应激活与否的特征激活平滑因子,而在PANet特征融合网络结构中采用Mish激活函数,增强网络对非线性特征的提取能力,从而提升网络的特征提取能力,提高遥感目标在密集分布场景中的检测效果.将所提算法和原始的YOLOv4目标检测算法在遥感图像数据集上进行对比实验,改进YOLOv4算法在实验选用的遥感图像测试数据集上的平均准确率均值(mAP)达到85.05%,与YOLOv4算法相比,mAP提升了5.77个百分点.实验结果表明,在单目标密集分布和多目标混合分布等背景复杂条件下,改进YOLOv4算法具有更好的检测效果.  相似文献   

7.
基于遥感目标在密集分布和背景复杂场景中因特征提取和表达能力的不足而存在漏检和检测效果不佳的问题,提出了改进YOLOv4的遥感目标检测算法.对用于检测目标的锚框(anchor)用K-means聚类算法重新聚类来减少网络计算量;改进特征提取网络结构,引入残差连接取缔网络中连续卷积操作来提高密集目标特征提取能力;在特征提取网络中激活函数加入自适应激活与否的特征激活平滑因子,而在PANet特征融合网络结构中采用Mish激活函数,增强网络对非线性特征的提取能力,从而提升网络的特征提取能力,提高遥感目标在密集分布场景中的检测效果.将所提算法和原始的YOLOv4目标检测算法在遥感图像数据集上进行对比实验,改进YOLOv4算法在实验选用的遥感图像测试数据集上的平均准确率均值(mAP)达到85.05%,与YOLOv4算法相比,mAP提升了5.77个百分点.实验结果表明,在单目标密集分布和多目标混合分布等背景复杂条件下,改进YOLOv4算法具有更好的检测效果.  相似文献   

8.
针对复杂交通场景中交通警察目标检测与定位准确率低的问题,提出一种优化YOLOv4模型的交通警察目标检测方法.首先,采用4种随机转换方式对自建的交通警察数据集进行扩充,解决了模型过拟合问题并提高模型的泛化能力;其次,将YOLOv4主干网络替换为MobileNet并引入Inception-Resnet-v1结构,有效地减少...  相似文献   

9.
为了实现桥梁表面裂痕的快速准确检测和及时修复,在目标检测网络YOLOv3的基础上,结合深度可分离卷积与注意力机制,提出实时检测桥梁表面裂痕的轻量级目标检测网络.使用深度可分离卷积操作替换YOLOv3的标准卷积操作,达到降低网络参数量的目的.同时为了解决深度可分离卷积操作带来的网络精度下降的问题,引入MobileNet v2的反转残差块.卷积块注意力模块同时关注图像的通道注意力和空间注意力,较好地进行特征的自适应学习.实验表明,文中算法可实现对桥梁表面裂痕的实时检测.相比YOLOv3,具有更高的检测精度和检测速度.  相似文献   

10.
针对YOLOv4网络模型参数量大,难以在资源有限的设备平台上运行的问题,提出一种对YOLOv4轻量化的车辆和行人检测网络。以MobileNetV1为主干网络,将PANet和YOLO Head结构中的标准卷积替换成深度可分离卷积,减少模型参数量;同时利用跨深度卷积结合不同膨胀率的空洞卷积构建特征增强模块,改善不同预测层对车辆和行人尺度变化的适应能力,提高网络的检测精度。实验结果表明,上述网络模型大小为45.28MB,检测速度为44FPS,相比YOLOv4模型大小减少81.44%,检测速度提升91.30%,在PASCAL VOC2007测试集上,检测精度达到86.32%,相比MobileNetV1-YOLOv4原网络提高1.29%的精确度,能够满足实时高效的检测要求。  相似文献   

11.
道路车辆实时检测是计算机视觉领域中的研究热点问题。针对道路车辆检测算法存在检测精度低、速度慢等问题,提出了一种基于改进YOLOv3的道路车辆目标检测方法。通过改进Darknet53骨架网络构建了有30个卷积层的卷积神经网络,在减少网络成本的同时提高了检测速度;根据道路车辆宽高比固定的特点,利用k-means聚类方法选取锚点预测边界框,提高了检测速度与精度。实验结果表明,提出的方法在标准数据集KITTI上的平均精度达到了90.08%,比传统的YOLOv3提高了0.47%,检测速度达到了76.04 f/s,明显优于传统的YOLOv3算法。同时将该方法应用于车辆行驶动态数据集,能够实现针对视频中道路车辆的实时检测。  相似文献   

12.
针对当前林业害虫检测方法检测速度慢、准确率较低和存在漏检误检等问题,提出一种基于注意力模型和轻量化YOLOv4的林业害虫检测方法。首先构建数据集,使用几何变换、随机色彩抖动和Mosaic数据增强技术对数据集进行预处理;其次将YOLOv4的主干网络替换为轻量化网络MobileNetV3,并在改进后的路径聚合网络(PANet)中添加卷积块注意力模块(CBAM),搭建改进的轻量化YOLOv4网络模型;然后引入Focal Loss优化YOLOv4网络模型的损失函数;最后将预处理后的数据集输入到改进后的网络模型中,输出包含害虫种类和位置信息的检测结果。实验结果表明,该网络的各项改进点对模型的性能提升都有效;相较于原YOLOv4模型,新模型的检测速度更快,平均精度均值(mAP)更高,并且能有效解决漏检和误检问题。新模型优于目前的主流网络模型,能满足林业害虫实时检测的精度和速度要求。  相似文献   

13.
低照度的夜间路况复杂,现有夜间车辆识别相关研究较少,且存在识别方法实时性不高、过多占用硬件资源等不足。针对夜间场景车辆识别干扰因素较多、检测效果不佳的问题,提出一种基于YOLOv4的Dim env-YOLO车辆目标检测算法。利用MobileNetV3网络替换原始YOLOv4中的主干网络,以减少模型参数量。在改进的YOLOv4模型上使用图像暗光增强方法 ,提高车辆目标在昏暗环境中的可识别性。在此基础上,引入注意力机制加强特征信息选择,同时利用深度可分离卷积降低网络计算量。选取北京部分道路的夜间场景图片自制数据集并进行实验验证,结果表明,在存在高斯噪声、模糊扰动、雨雾夜晚等情况下,Dim env-YOLO算法的测试结果较稳定,对于照度低于30 lx的昏暗条件下的车流,其检测mAP值达到90.49%,对于最常见的轿车类别,mAP值达到96%以上,优于Faster-RCNN、YOLOv3、YOLOv4等网络模型在昏暗光照条件下的检测效果。  相似文献   

14.
车辆属性检测是一个基础任务,其属性检测结果可以被应用到很多下游的交通视觉任务。提出了一种基于YOLOv5的车辆属性检测改进算法。针对检测目标较小的问题,加入了卷积注意力模块,让网络模型把更多的注意力放在小目标对象上;针对数据集样本种类较少的问题,改进了YOLOv5的马赛克数据增强方式;使用自门控激活函数Swish,起到抑制噪声、加快收敛速度并提升模型鲁棒性的作用。此外,还在公开车辆数据集VeRi-776的基础上进行了详细的车辆属性标注,构建了一个车辆属性数据集。实验结果表明,改进后的算法比原始YOLOv5的平均精确率提升了4.6%,能够准确地检测到车辆图像的通用属性,可以供下游任务使用。  相似文献   

15.
随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。  相似文献   

16.
针对传统目标识别算法复杂场景下的道路目标识别精度低、实时性差、小目标检测难度大等问题,提出了基于红外场景下FS-YOLOv5轻量化模型。采用单阶段目标检测网络YOLOv5s作为基础网络,提出了一种新的FSMobileNetV3网络代替原网络中的CSPDarknet主干网络来提取特征图像;在原网络CIoU损失函数的基础上引入Power变换,替换为α-CIoU,提高网络对小目标的检测能力;将K-means++聚类算法应用在FLIR红外数据集上重新生成Anchor,最后利用DIoU-NMS替换原网络的NMS后处理方法,改善对遮挡物体的检测能力,降低了模型的漏检率。通过在FLIR红外数据集上的消融实验验证了FS-YOLOv5轻量化算法满足红外场景下的道路目标检测任务,与原网络相比,在平均精度仅降低0.37个百分点的前提下,FS-YOLOv5模型的大小减少了26%,参数量减少了29%,检测速度提升了11 FPS,满足了在不同场景下移动端部署的需求。  相似文献   

17.
虽然基于深度学习的目标检测算法在道路场景中的目标检测方面已经取得了很好的效果,但是对于复杂道路场景中的密集目标,远处的小尺度目标检测精度低,容易出现漏检误检的问题,提出一种改进YOLOv7的复杂道路场景目标检测算法。增加小目标检测层,增加对小目标的特征学习能力;采用K-means++重聚类先验框,使得先验框更贴合目标,增加网络对目标的定位精度;采用WIoU(Wise-IoU)损失函数,增加网络对普通质量锚框的关注度,提高网络对目标的定位能力;在颈部和检测头引入协调坐标卷积(CoordConv),使网络能够更好地感受特征图中的位置信息;提出P-ELAN结构对骨干网络进行轻量化处理,降低算法参数量和运算量。实验结果表明,该改进算法在华为SODA10M数据集下的mAP达到64.8%,比原算法提高2.6个百分点,模型参数量和运算量分别降低12%和7%,达到检测精度和检测速度的平衡。  相似文献   

18.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

19.
针对炼焦厂烟火排放全天候环保监测的要求,提出了基于改进YOLOv5s的焦炉烟火识别算法;该算法以YOLOv5s为基础网络,在主干网络Backbone中添加CBAM注意力机制模块,使网络更加关注重要的特征,提升目标检测的准确率;新增FReLU激活函数代替SiLU激活函数,提高激活空间的灵敏度,改善烟火图像视觉任务;在自建数据集中烟、火样本标签基础上,增加灯光标签来解决强灯光对火焰识别的干扰,并通过分流训练、检测的方式来解决昼夜场景的烟火检测问题;在自建数据集上做对比实验,更换激活函数后,联合CBAM模块的YOLOv5s模型效果最佳;实验结果显示,与原始YOLOv5s模型相比,在白天场景下的烟火识别mAP值提升了6.7%,在夜间场景下的烟火识别mAP值高达97.4%。  相似文献   

20.
针对YOLOv4模型在目标检测过程中参数量和计算量较大而导致实时性不佳的问题,提出了一种轻量化模型L-YOLOv4(Light YOLOv4)。该模型以YOLOv4特征金字塔结构和多尺度检测为基础,对模型结构进行了整体的优化和改进,采用MobileNetV2网络代替主干特征提取网络,同时用深度可分离卷积替换加强特征提取网络的普通卷积,从而达到减少网络参数量的目的。实验时对UA-DETRAC车辆数据集进行了基于旋转不变性下的数据增强,以缩小图像预测框与真实框之间的误差。多模型对比实验结果表明,L-YOLOv4模型相较于其他常用的轻量级检测模型有着更小的参数量和更快的FPS,与YOLOv4模型相比,参数量减少了83.21%,FPS增加了11帧,并减少了车辆漏检情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号