共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
3.
碳化法制备高纯碳酸锂 总被引:3,自引:0,他引:3
以工业级碳酸锂为原料,采用碳化法进行提纯,对碳化温度、碳化时间、碳化压力等重要影响因素进行了实验研究及分析,并确定了最佳反应条件。最佳工艺参数:碳化压力为6×105~6.5×105 Pa,碳化时间为2~3 h,碳化温度为30~40 ℃,树脂牌号为D110,母液流出速度为120~140 g/h,分解搅拌速度为30 r/s以上,此工艺条件下制得的碳酸锂纯度为99.991%。 相似文献
4.
设计合成了3个含有吡嗪基团的荧光探针分子和喹啉基团的荧光探针分子,其结构通过红外(FT-IR)、质谱(MS)、核磁共振氢谱(1HNMR)进行表征,通过吸收光谱和荧光光谱研究了不同金属离子对目标探针分子的影响。结果表明:Cd2+使401 nm处荧光蓝移了20 nm;Co2+、Hg2+、Pb2+、Zn2+使357 nm处荧光分别红移了20、50、1401、40 nm;Cd2+、Hg2+使349 nm处荧光分别红移了707、5 nm。 相似文献
5.
近年来,随着锂离子电池的广泛应用及动力汽车产业的兴起,锂的需求量逐年增加. 碳酸锂作为一种最重要的基础锂盐,在锂离子电池中广泛应用,主要用于合成锂离子电池正极材料. 目前,高纯碳酸锂主要通过从矿石提锂浸出液或盐湖卤水中经过纯化工艺制备. 纯化方法主要包括碳化法、苛化法、电解法、碳酸锂重结晶法及离子交换法等. 但碳酸锂制备和纯化过程中存在诸多问题,如锂钠的深度分离、高纯碳酸锂的制备等. 本工作对碳酸锂制备及纯化方法进行综述,指出了碳酸锂制备及纯化过程中存在的主要问题及未来的发展方向. 相似文献
6.
水溶性萘酰亚胺氢离子荧光分子探针的合成及性能 总被引:1,自引:0,他引:1
4 溴 1,8 萘酐与羟乙氧基乙胺反应合成了中间体N 羟乙氧基乙基 4 溴 1,8 萘酰亚胺。用该中间体分别与哌嗪、甲基哌嗪和羟乙基哌嗪反应 ,合成了 4 哌嗪基、4 (甲基哌嗪 )基和 4 (羟乙基哌嗪 )基 1,8 萘酰亚胺衍生物 (NP - 1、NP - 2和NP - 3)。这 3种化合物具有较好的水溶性 ,其水溶液的荧光强度随溶液由碱性到酸性变化 ,荧光强度增加在 5 0倍以上。NP - 1、NP - 2和NP - 3的pK′a值分别为 8 5、7 6和 6 7。 相似文献
7.
8.
9.
由于银的广泛应用及在医学领域的重要的应用价值,近年来银离子荧光探针研究引起了科学家们的广泛关注。荧光探针法具有检测灵敏度高、选择性好、响应时间短等优点而成为Ag+检测的重要手段之一。本文综述了近年来基于罗丹明,喹啉及芘为发色团的Ag+荧光探针。 相似文献
10.
11.
根据西藏扎布耶湖的高锂镁比特性,以卤水析出的粗碳酸锂为原料,确定了经济实用的化学分步碱化沉淀,去除杂质元素,最后碳酸化沉淀碳酸锂的提纯工艺。研究了沉淀工艺、不同水体系和沉淀剂对碳酸锂纯度的影响。采用等离子发射光谱、红外光谱、X射线衍射、扫描电镜等对高纯碳酸锂进行表征。结果表明,最佳工艺条件是在纯净水体系中经化学分步碱化沉淀,去除铁、铝、镁、钙等杂质,最后碳酸铵沉锂,可获得纯度为99.90%以上的白色松软的高纯碳酸锂。红外谱图和XRD衍射谱图显示样品为扎布耶型的纯碳酸锂;扫描电镜显示碳酸锂晶体为棒状,长为3~5 μm,直径为0.5 μm以下。 相似文献
12.
研究了以蛇纹石为原料制取高纯度活性氧化镁的工艺。以硫酸浸取蛇纹石矿石得到硫酸镁,以精制硫酸镁溶液为原料,氨水、碳酸氢铵为沉淀剂制取碱式碳酸镁前驱体,煅烧碱式碳酸镁前驱体得到高纯度活性氧化镁产品。考察了制取碱式碳酸镁的工艺条件,最佳工艺条件为:预氨pH值为9.6~9.7、镁离子与总铵(NH3+NH4+)摩尔比为0.46、氨与碳酸氢铵摩尔比为1.4。在此条件下,镁的沉淀率达到最大值89%。碱式碳酸镁前驱体最佳煅烧条件为:升温速率10℃/min,煅烧温度650℃,煅烧时间2h。在此条件下得到了碘吸附值为165.1mgI2/gMgO、柠檬酸活性值为3.05s、比表面积为78.03m2/g的高纯活性氧化镁。 相似文献
13.
采用高频红外吸收法测定了碳酸钡中硫的含量,并对样品作测定前的预处理(物理处理),在测定中选用复合型助熔剂,解决了高频感应炉中因炉顶氧气流的作用而导致的样品喷溅问题。该法可准确测定硫质量分数为0.001%-5%的碳酸钡中的硫,回收率为92.6%-104.6%。相对标准偏差(RSD)为0.81%~2.23%,操作简单,快速,方法准确可靠,满足测定需求。 相似文献
14.
以工业级碳酸锂为原料,采用水热法脱除其中的微量硫杂质制备电池级碳酸锂,探究了水热温度、水热时间对硫杂质脱除效果的影响。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等方法对产物形貌和结构做了表征。研究结果表明,硫杂质主要以Li2SO4形式存在,吸附在碳酸锂表面;水热过程改善了碳酸锂的结晶性,减少了晶体表面活性位点,降低了表面硫杂质的吸附量。在温度为140 ℃、水热反应4 h后碳酸锂质量分数提高至99.8%,SO42-的质量分数降至6.30×10-4,均符合电池级碳酸锂行业标准(YST 582—2013)。 相似文献
15.
以工业氯化锂为原料,利用无机盐在正丁醇中的溶解度差异对其进行纯化,同时采用在正丁醇-水两相体系中进行碳化,制备出碳酸锂纯度达到99.6%。本法工艺简单,较易实现工业化,市场前景广阔。 相似文献
16.
西藏有丰富的卤水锂资源,笔者通过多年的研究,开发了一种对西藏扎布耶盐湖卤水中得到的碳酸盐型锂精矿进行加工提纯的新工艺--深度碳化法。在一定的二氧化碳压力、一定的反应温度下,固体碳酸锂精矿可以变为可溶于水的碳酸氢锂,从而与不溶杂质分离,然后经过树脂交换除杂质、加热分解、精制洗涤、烘干、粉碎,得到电池级碳酸锂。这种新工艺与现行的苛化法工艺相比有以下几大优点:工艺简单、流程短、物料流通量小、金属回收率高、污染小、成本低、投资少,是目前最有前途的一条工艺路线。此新工艺已经获得国家发明专利(CN,102502720)。 相似文献
17.
采用旋转填料床进行碳酸锂超重力碳化反应,并通过调节物料浓度、气体流量、旋转填料床频率以及进料速率4个实验因素进行正交实验。确定了最佳工艺条件为:物料浓度60 g/L,气体流量0.08 m3/h,旋转填料床频率50 Hz,进料速率350 mL/min。在最优工艺条件下进行实验,反应时间tx平均值为55 min,约为传统反应器碳化时间的1/3;所得cx (Li+)平均值为 9.308 g/L,较传统反应器提高了12.78 %;且结果重复性较好。该实验表明,超重力碳化反应可以显著提高传质速率,缩短反应时间,提高物料和气体利用率,强化反应过程,增加产物浓度。 相似文献
18.
针对江西宜丰地区氧化锂质量分数<2.0%以下中低品位锂瓷土矿,研究了硫酸铵法提取碳酸锂技术路线。首先,利用二步焙烧工艺,有利于脱氟、提高锂浸出率,并且能够有效防止结窑现象发生。在浸出液除杂过程中,采用成矾除铝的方法将大量溶出的铝离子转变为KAl(SO4)2·12H2O、NH4Al(SO4)2·12H2O等有价值复盐,规避了传统石膏法产生的大量固废,有70%的铝离子被转变为矾盐晶体,同时带出大量的结晶水,减轻后续浓缩压力,对比传统的石膏法产生大量固废而言,其优点是显而易见的。碳化反应产品的XRD以及氧化锂含量分析表明,碳酸锂的纯度达到99%以上,全程锂收率为50%~60%。作为提锂实验对比,采用宜春414矿锂质量分数为4.0%的锂云母,由于414矿样中铝的相对含量更低,导致相同的除杂难度下得到的414矿样中浸出液锂离子浓度更高,浓缩倍数更小,414矿样的锂回收率更高。实验结果表明,中低品位锂瓷土提锂的工艺规律,通过适当改变参数,能够应用于难度更低的高品位的锂云母提锂过程。 相似文献