共查询到17条相似文献,搜索用时 78 毫秒
1.
近年来,深度卷积神经网络在图像识别和语音识别等领域被广泛运用,取得了很好的效果。深度卷积神经网络是层数较多的卷积神经网络,有数千万参数需要学习,计算开销大,导致训练非常耗时。针对这种情况,本文提出深度卷积神经网络的多GPU并行框架,设计并实现模型并行引擎,依托多GPU的强大协同并行计算能力,结合深度卷积神经网络在训练中的并行特点,实现快速高效的深度卷积神经网络训练。
相似文献
2.
针对现有的图像特征分类方法收敛性差,分类无法满足日益增加的网络需求的现状,本文提出了一种基于深度强化学习的图像特征分类方法。通过对目标图像特征区域进行复域Contourlet分解,过滤处理分解结果,从而可以将目标图像子带系数矩阵提取出来,求取系数矩阵的相关特征。采取深度学习网络,使所选图像的特征向量直接经过已训练的层状网络深度模型,完成图像特征分类。实验结果表明,所提方法的误识率比现有方法明显降低,收敛速度明显提升。改进方法比传统方法更具优势,能够满足图像特征分类智能化处理的需要。 相似文献
3.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度... 相似文献
4.
目的 糖尿病性视网膜病变(DR)是目前比较严重的一种致盲眼病,因此,对糖尿病性视网膜病理图像的自动分类具有重要的临床应用价值。基于人工分类视网膜图像的方法存在判别性特征提取困难、分类性能差、耗时费力且很难得到客观统一的医疗诊断等问题,为此,提出一种基于卷积神经网络和分类器的视网膜病理图像自动分类系统。方法 首先,结合现有的视网膜图像的特点,对图像进行去噪、数据扩增、归一化等预处理操作;其次,在AlexNet网络的基础上,在网络的每一个卷积层和全连接层前引入一个批归一化层,得到一个网络层次更复杂的深度卷积神经网络BNnet。BNnet网络用于视网膜图像的特征提取网络,对其训练时采用迁移学习的策略利用ILSVRC2012数据集对BNnet网络进行预训练,再将训练得到的模型迁移到视网膜图像上再学习,提取用于视网膜分类的深度特征;最后,将提取的特征输入一个由全连接层组成的深度分类器将视网膜图像分为正常的视网膜图像、轻微病变的视网膜图像、中度病变的视网膜图像等5类。结果 实验结果表明,本文方法的分类准确率可达0.93,优于传统的直接训练方法,且具有较好的鲁棒性和泛化性。结论 本文提出的视网膜病理图像分类框架有效地避免了人工特征提取和图像分类的局限性,同时也解决了样本数据不足而导致的过拟合问题。 相似文献
5.
深度学习目前在计算机视觉、自然语言处理、语音识别等领域得到了深入发展,与传统的机器学习算法相比,深度模型在许多任务上具有较高的准确率.然而,作为端到端的具有高度非线性的复杂模型,深度模型的可解释性没有传统机器学习算法好,这为深度学习在现实生活中的应用带来了一定的阻碍.深度模型的可解释性研究具有重大意义而且是非常必要的,近年来许多学者围绕这一问题提出了不同的算法.针对图像分类任务,将可解释性算法分为全局可解释性和局部可解释性算法.在解释的粒度上,进一步将全局解释性算法分为模型级和神经元级的可解释性算法,将局部可解释性算法划分为像素级特征、概念级特征以及图像级特征可解释性算法.基于上述分类框架,总结了常见的深度模型可解释性算法以及相关的评价指标,同时讨论了可解释性研究面临的挑战和未来的研究方向.认为深度模型的可解释性研究和理论基础研究是打开深度模型黑箱的必要途径,同时可解释性算法存在巨大潜力可以为解决深度模型的公平性、泛化性等其他问题提供帮助. 相似文献
6.
基于深度学习的三维模型分类方法大都面向特定的具体任务,在面向三维模型多样化分类任务时表现不佳,泛用性不足。为此,提出了一种通用的端到端的深度集成学习模型E2E-DEL(end-to-end deep ensemble learning),由多个初级学习器和一个集成学习器组成,可以自动学习复杂三维模型的复合特征信息;并使用层次迭代式学习策略,综合考量不同层次网络的特征学习能力,合理平衡各个初级学习器的子特征学习和集成学习器的集成特征学习效果,自适应于三维模型多样化分类任务。基于此,设计了一种面向多视图的深度集成学习网络MV-DEL(multi-view deep ensemble learning),应用于一般性、细粒度、零样本三种不同类型的三维模型分类任务中。在多个公开数据集上的实验验证了该方法具有良好的泛化性与普适性。 相似文献
7.
由于图像分类标准的可靠性较低,导致在具体的分类阶段,错误分类的情况较为普遍,提出基于深度字典学习的图像分类系统设计研究。结合图像分类的实际计算需求,在硬件构架中设置了3个数字低压差线性稳压器(Low Dropout Regulator,LDO)和旁路调节场效应晶体管(Field Effect Transistor,FET)结构,并将ET200SP的SIMATIC ET 200SP模块作为系统主体构架,从而实现图像分类标准输出模块和字典输出模块的集中控制。在软件运行逻辑的设计上,构建了具有分层特征的学习网络结构,分析得到图像稀疏度字典库,将其作为图像分类的标准,实现对图像的分类处理。测试结果表明,设计系统可以实现对图像的准确分类。 相似文献
8.
乳腺癌病理图像的自动分类具有重要的临床应用价值。基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性。 相似文献
9.
准确、高效的乳腺癌病理图像分类是计算机辅助诊断的重要研究内容之一。随着机器学习技术的发展,深度学习日渐成为一种有效的乳腺癌病理图像分类处理方法。分析了乳腺癌病理图像分类方法及目前存在的问题;介绍了四种相关的深度学习模型,对基于深度学习的乳腺癌病理图像分类方法进行梳理,并通过实验对比分析现有模型的性能;最后对乳腺癌病理图像分类的关键问题进行了总结,并讨论了未来研究的发展趋势。 相似文献
10.
深度元学习是解决小样本分类问题的流行范式。对近年来基于深度元学习的小样本图像分类算法进行了详细综述。从问题的描述出发对基于深度元学习的小样本图像分类算法进行概括,并介绍了常用小样本图像分类数据集及评价准则;分别从基于模型的深度元学习方法、基于优化的深度元学习方法以及基于度量的深度元学习方法三个方面对其中的典型模型以及最新研究进展进行详细阐述。最后,给出了现有算法在常用公开数据集上的性能表现,总结了该课题中的研究热点,并讨论了未来的研究方向。 相似文献
11.
报文分类是网络设备的基本处理模式,通常采用报文过滤系统对每个报文进行分类。传统报文分类难以适应当今越来越高的网络流量,分类处理速度低于报文到达网络接口的速度,无法实现实时分析。因此,本文提出使用GPU对大规模报文集进行并行分类的方法,利用GPU的线程级并行处理能力加速报文分类吞吐率,并对其性能及优化方法进行详细分析。实验结果表明,GPU加速的Linear Search和RFC报文分类算法与纯CPU系统执行相比可达到4.4~132.5倍的加速比。 相似文献
12.
图像识别作为深度学习领域内的一项重要应用,水果图像的分类识别在智慧农业以及采摘机器人等方面具有重要应用。针对以往传统图像分类算法存在泛化能力差、准确率不高等问题,提出一种在TensorFlow框架下基于深度学习和迁移学习的水果图像分类算法。该算法采用Inception-V3的部分模型结构对水果图像数据进行特征提取,采用Softmax分类器对图像特征进行分类,并通过迁移学习方式进行训练得到迁移训练模型。测试结果表明,该算法与传统水果分类算法对比,具有较高识别准确率。 相似文献
13.
卫星遥感技术是一种非常重要的地球空间监测技术.卫星遥感图像经过处理后具有数据量大和数据类型复杂多样的特点,传统方法进行识别分类耗费大量人力物力.为了降低工作量,并为后续处理提供便利,本文将深度学习算法应用于卫星图像的识别分类中,设计了一种基于VGGNet的识别分类方法,利用除雾算法对训练数据进行数据增强处理,并添加岭回归正则化层,利用标签之间的相关性进行预测,使得方法达到90%以上的F2 score,并在实验部分进行了对比验证.最后利用此方法搭建了一个基于Django的在线识别分类展示系统. 相似文献
14.
针对高光谱图像分类中标记样本获取费时费力,无标记数据难以得到有效利用以及主动学习与深度学习结合难等问题,结合贝叶斯深度学习与主动学习的最新进展,提出一种基于深度贝叶斯的主动学习高光谱图像分类算法。利用少量标记样本训练一个卷积神经网络模型,根据与贝叶斯方法结合的主动学习采样策略从无标记样本中选择模型分类最不确定性的样本,选取的样本经人工标记后加入到训练集重新训练模型,减小模型不确定性,提高模型分类精度。通过PaviaU高光谱图像分类的实验结果表明,在少量的标记样本下,提出的方法比传统的方法分类效果更好。 相似文献
15.
Tariq Mohammed Alqahtani 《计算机系统科学与工程》2023,44(2):1433-1449
In recent years, huge volumes of healthcare data are getting generated in various forms. The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker. Due to such massive generation of big data, the utilization of new methods based on Big Data Analytics (BDA), Machine Learning (ML), and Artificial Intelligence (AI) have become essential. In this aspect, the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning (BDA-CSODL) technique for medical image classification on Apache Spark environment. The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately. BDA-CSODL technique involves different stages of operations such as preprocessing, segmentation, feature extraction, and classification. In addition, BDA-CSODL technique also follows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image. Moreover, a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor. Stochastic Gradient Descent (SGD) model is used for parameter tuning process. Furthermore, CSO with Long Short-Term Memory (CSO-LSTM) model is employed as a classification model to determine the appropriate class labels to it. Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique. A wide range of simulations was conducted on benchmark medical image datasets and the comprehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures. 相似文献
16.
铁路检测、监测领域产生海量的图像数据,基于图像场景进行分类对图像后续分析、管理具有重要价值.本文提出一种结合深度卷积神经神经网络DCNN (Deep Convolutional Neural Networks)与梯度类激活映射Grad-CAM (Grad Class Activation Mapping)的可视化场景分类模型,DCNN在铁路场景分类图像数据集进行迁移学习,实现特征提取,Grad-CAM根据梯度全局平均计算权重实现对类别的加权热力图及激活分数计算,提升分类模型可解释性.实验中对比了不同的DCNN网络结构对铁路图像场景分类任务性能影响,对场景分类模型实现可视化解释,基于可视化模型提出了通过降低数据集内部偏差提升模型分类能力的优化流程,验证了深度学习技术对于图像场景分类任务的有效性. 相似文献
17.
随着GPU通用计算能力的不断发展,一些新的更高效的处理技术应用到图像处理领域.目前已有一些图像处理算法移植到GPU中且取得了不错的加速效果,但这些算法没有充分利用CPU/GPU组成的异构系统中各处理单元的计算能力.文章在研究GPU编程模型和并行算法设计的基础上,提出了CPU/GPU异构环境下图像协同并行处理模型.该模型充分考虑异构系统中各处理单元的计算能力,通过图像中值滤波算法,验证了CPU/GPU环境下协同并行处理模型在高分辨率灰度图像处理中的有效性.实验结果表明,该模型在CPU/GPU异构环境下通用性较好,容易扩展到其他图像处理算法. 相似文献