首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 172 毫秒
1.
为解决磁性纳米Fe3O4颗粒易腐蚀、团聚等问题,对其进行功能化修饰改进。在超声波辐照下以FeCl3和FeSO4为原料,氨水为沉淀剂,然后加入正硅酸乙酯(TEOS)和3-氨丙基三甲氧基硅烷(APTMS)进行功能化修饰,制备得到SiO2包覆的氨基功能化纳米复合材料Fe3O4@SiO2-APTMS,并采用TEM、FTIR、VSM、TGA、低温氮吸附、XRD等对其进行表征测试,证实了超声波辐照下制备的复合材料具有磁响应强度强、耐酸碱性强、分散性高、比表面积大、粒径小等特点,同时探究了纳米复合材料对Pb(Ⅱ)的吸附性能。结果表明:溶液初始p H值为5.86,吸附剂投加量为1.0~1.5 g·L-1时Pb(Ⅱ)吸附效果较好;Langmuir模型适合模拟该等温吸附过程,吉布斯自由能变?G0<0,吸附过程是一个自发过程;准二级动力学可以较好地描述Pb(Ⅱ)在复合材料上的吸附行为,...  相似文献   

2.
为实现高岭土(Kaolin)在Cu2+废水处理中的实际应用,采用球磨方法制备了剥离Kaolin,并通过氧化沉淀法制备了Fe3O4/Kaolin磁性复合材料。通过激光粒度分析仪、SEM、XRD对Fe3O4/Kaolin磁性复合材料的形貌及组成进行表征,并通过测试Fe3O4/Kaolin磁性复合材料对Cu2+的饱和吸附量和磁分离回收率,确定了当Kaolin球磨4.0 h、掺量为3.0 g时所制备的Fe3O4/Kaolin磁性复合材料对Cu2+的吸附性能最佳,平衡吸附量为17.98 mg/g。磁滞回线结果表明,Fe3O4/Kaolin磁性复合材料具有较好的磁响应性,饱和磁化强度约为16.19 emu/g。此外,采用Langmuir和Freundlich吸附等温式对Fe3O4/Kaolin磁性复合材料的吸附数据进行拟合,结果表明,Fe3O4/Kaolin磁性复合材料对Cu2+的吸附行为基本符合Langmuir吸附等温模型和Freundlich吸附等温模型,既存在单分子层吸附,也存在多分子层吸附。  相似文献   

3.
为富集回收低浓度矿山尾水中稀土资源,采用溶胶-凝胶法和水热法制备了纤维状外壳的磁性二氧化钛复合材料Fe3O4@fTiO2,利用SEM、TEM、XPS、FTIR和XRD对材料进行表征,考察了Fe3O4@fTiO2对稀土La3+的吸附行为。结果表明:Fe3O4@fTiO2是外壳为纤维状的核壳结构磁性复合材料;吸附剂具有良好的超顺磁性,饱和磁化强度高达30.81 emu·g-1;在15℃、pH=5的酸性条件下,Fe3O4@fTiO2对稀土La3+在15 min内达到吸附平衡,且符合伪一级动力学模型;Langmuir等温吸附模型能较好地描述吸附La3+过程,理论吸附容量为142.88 mg·g-1;Fe3...  相似文献   

4.
首先通过溶剂热法制备Fe3O4纳米颗粒,再通过离子强度调控法制备磁性氧化石墨烯(Fe3O4/GO),最后用共沉淀法制得Fe3O4/GO/CeO2复合纳米材料,并用扫描电镜(SEM)、能量色散X射线光谱(EDX)、X射线衍射(XRD)等技术对其进行表征。结果表明:Fe3O4纳米颗粒与CeO2纳米颗粒均匀地分散在GO上。研究了Fe3O4/GO/CeO2复合纳米材料对亚甲基蓝染料的吸附性能,并考察了不同因素对吸附性能的影响。由于Fe3O4纳米颗粒有着磁性的性质,易回收分离,具有再生利用性能。吸附实验结果表明:Fe3O4/GO/CeO2复合纳米材料循环5次后对亚甲基蓝的吸附率仍在95%以上。因此,Fe  相似文献   

5.
首先合成氨基功能化Fe3O4(NH2—Fe3O4),并以NH2—Fe3O4为磁核,六水合硝酸锌(Zn(NO3)2·6H2O)为锌源,在表面活性剂聚乙二醇(PEG,PEG-400)辅助下通过水热法制备PEG修饰的ZnO(NH2—Fe3O4@PEG@ZnO)磁性复合材料。利用XRD、SEM、TEM、XPS、紫外-可见-近红外分光光度计、比表面吸附仪(BET)、振动样品磁强计(VSM)等对NH2—Fe3O4@PEG@ZnO复合材料组成、形貌、磁性能等进行表征。并进一步以罗丹明B(RhB)染料为模拟污染物,对NH2?Fe3O4@PEG@ZnO复合材料的光催化降解性能进行研究,采用单因素法探究Fe与Zn的原子比(n(Fe)∶n(Zn))、合成温度、表面活性剂种类及用量对NH2—Fe3O4@PEG@ZnO复合材料光催化降解性能的影响。结果表明,n(Fe)∶n(Zn)=1∶15、水热合成温度为180℃制备的NH2—Fe3O4@ZnO复合材料具有良好的光降解性能,0.0500 g NH2—Fe3O4@ZnO复合材料在紫外光照射20 min内对50 mL RhB(1.0×10?5 mol·L?1)溶液降解率为90.36%。而相同条件制备的NH2—Fe3O4@PEG@ZnO复合材料呈微球状,比表面积为11.43 m2·g?1,禁带宽度为2.51 eV,对RhB的光催化降解率可提高至99.36%,循环使用10次后,其对RhB的光催化降解率仍可达96.48%,PEG-400对NH2—Fe3O4@ZnO复合材料的光催化活性具有较大的协同效应。   相似文献   

6.
以氧化石墨烯(GO)、纳米Fe3O4、钛酸四丁酯(TBOT)为原料,合成了磁性介孔TiO2/GO(Fe3O4@TiO2/GO)复合材料,用其处理浓度为10 mg·L-1的含U(Ⅵ)废水。研究了Fe3O4@TiO2/GO复合材料中GO含量、溶液初始pH值、Fe3O4@TiO2/GO复合材料投加量、反应时间、U(Ⅵ)初始浓度及共存离子对U(Ⅵ)吸附的影响。结果表明:在pH值为6、GO质量分数为60wt%、Fe3O4@TiO2/GO复合材料投加量为10 mg的条件下,Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附效果最佳,较同等条件下磁性介孔Fe3O4@TiO2复合材料和GO的吸附量分别高了10.99 mg·g-1和1.91 mg·g-1。Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附180 min即达到平衡,准二级动力学模型和Freundlich吸附等温模型能很好地描述其吸附过程。解吸实验表明,经5次吸附-解吸后,U(Ⅵ)的吸附率仍高达90.86%,说明Fe3O4@TiO2/GO复合材料具有较高的循环利用性能。   相似文献   

7.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

8.
采用共沉淀法成功制备出具有超顺磁性的纳米Fe3O4, 并将Fe3O4与SrFe12O19复合制成复合吸波材料Fe3O4-SrFe12O19, 利用X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(PNA)对产物的物相、显微结构、磁性能和吸波性能进行了表征与分析。结果表明, 当Fe3O4与SrFe12O19质量比为1∶0.3时, Fe3O4-SrFe12O19饱和磁化强度为11.1 emu·g-1, 矫顽力0.86 Oe, 剩余磁化强度0.08 emu·g-1, 其吸波性能最佳, 最大吸收峰值为-17.7 dB,-5 dB频宽为1.3 GHz, 较Fe3O4和 SrFe12O19的最大吸收峰值分别提高247%和185%, 频带分别拓宽1.12 GHz和0.40 GHz。  相似文献   

9.
为了实现目前实际应用对吸波材料“轻、薄、宽、强”的要求,本工作采用氧化石墨烯(GO)结合磁性纳米粒子四氧化三铁(Fe3O4)构筑了一类新型的轻质且具有良好柔韧性的复合纳米纸吸波材料,希望其能简化复合材料成型工艺并替代吸波涂料,实现对吸波性能的调控。首先,利用γ-氨丙基三乙氧基硅烷(KH-550)对Fe3O4纳米粒子进行有机化修饰,制备了分散均匀、具有电磁双损性能的Fe3O4-GO复合纳米粒子,进而利用溶剂蒸发沉积法制备了GO及Fe3O4-GO纳米纸,并对其结构及性能进行了研究。结果表明,NH2-Fe3O4稳定附着在GO片层上,当Fe3O4与GO的质量比为4∶6时,其输入阻抗Zin与自由空间阻抗Z0最为接近,复合纳米纸的阻抗匹配性能最好。Fe3  相似文献   

10.
通过电化学还原法制备纳米Fe3O4-还原氧化石墨烯复合修饰玻碳(Fe3O4-rGO/GCE)电极,用于多巴胺(DA)的检测。采用SEM、TEM和循环伏安对纳米Fe3O4-rGO复合材料进行表征。在pH为7.0的磷酸盐缓冲液(PBS)中,采用循环伏安法研究了DA在纳米Fe3O4-rGO/GC上的电化学行为。实验结果表明,较裸GC电极和rGO修饰(rGO/GC)电极,由于纳米Fe3O4与rGO的协同作用,纳米Fe3O4-rGO/GC显著增大了Fe3O4-rGO/GC复合材料电极电化学活性面积和氧化峰电流强度ipa。DA的浓度在6.0×10-8~2.0×10-6 mol/L和2.0×10-6~8.0×10-5 mol/L范围内,与氧化峰电流强度ipa呈良好的线性关系,检出限达4.0×10-9 mol/L(信噪比S/N=3)。抗坏血酸和尿酸共存物几乎不干扰DA的测定,选择性高。Fe3O4-rGO/GC修饰电极用于盐酸DA注射液中的DA含量测定,获得结果较好,回收率为97.1%~103.9%。  相似文献   

11.
以海藻酸钠(SA)作为基体前驱材料,通过离子交联法包埋固化L-甲硫氨酸(L-met)和纳米Fe3O4形成磁性复合凝胶球SA@Fe3O4/L-met。实验探究了SA@Fe3O4/L-met在不同pH、投加量和初始离子浓度条件下对Pb(Ⅱ)吸附能力的影响。结果表明,在pH=5、投加量为0.5 g·L?1、初始浓度为20 mg·L?1时,SA@Fe3O4/L-met对Pb(Ⅱ)能达到较好的吸附效率,最大吸附量可达到328.02 mg·g?1,远大于Fe3O4@SA与SA的吸附量142.5 mg·g?1和152.8 mg·g?1。吸附动力学和热力学研究表明该吸附过程分别对准二级动力学方程和Langmuir方程的拟合程度更大,且反应过程是一个熵增吸热的过程。最后采用SEM、XPS、VSM等对SA@Fe3O4/L-met的结构与性能进行表征分析,发现SA@Fe3O4/L-met中的氨基和羧基通过配位反应与Pb(Ⅱ)结合,同时还存在着离子交换作用。经过5次解吸后SA@Fe3O4/L-met的吸附量仍能达到210.5 mg·g?1,是一种较理想的环保吸附剂。   相似文献   

12.
采用Shewanellaoneidensis MR-1合成Fe2O3/TNTs纳米复合材料,通过高分辨透射电子显微镜、扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪、紫外-可见分光光度计等对Fe2O3/TNTs的结构和性能进行表征。结果表明,Fe2O3成功负载在TiO2纳米管上;在紫外光照射下,Fe2O3/TNTs在60min内对苯胺蓝的脱色率可达到97.5%,表现出较好的光催化活性。Shewanellaoneidensis MR-1协同Fe2O3/TNTs纳米复合材料对苯胺蓝脱色率较So.neidensis MR-1提高了1.63%。  相似文献   

13.
在碱性条件下,以共沉淀法合成Fe3O4,再以正硅酸乙酯和二乙烯三胺为原料,制备出Fe3O4复合材料(Fe3O4-SiO2-NH2)。采用FT-IR、VSM和SEM对其结构进行表征,并研究了复合材料对Cd2+的吸附性能。实验结果表明,在T=55℃、t=60 min、Cd2+溶液的初始浓度为100 mg·L-1、Fe3O4-SiO2-NH2的添加量为0.1 g时,该材料对Cd2+的吸附容量为71.4 mg·g-1。其吸附动力学行为更符合准二级动力学,热力学更适合用Langmuir等温吸附模型描述。Fe3O4-SiO2-NH2吸附Cd2+后洗脱再生,经过5次循环使用后,其对Cd2+的去除率仍然大于70%。   相似文献   

14.
采用超声协助悬浮聚合法以高氯酸根(ClO4-)为模板制备了Fe3O4@离子印迹聚(苯乙烯-3-(2-氨基三乙基四胺)-2-甲基丙烯酸羟丙酯-二乙烯苯)(Fe3O4@ⅡP(St-HPMA-DVB))磁性复合材料,通过TEM、振动样品磁强计(VSM)、TGA、XRD、元素分析(EA)、FTIR等对其进行表征,考察了交联剂DVB用量对材料结构与性能的影响。结果表明:合成的Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料平均粒径为500~2 000 nm,随DVB用量的增加而增大;磁化强度为9.77~12.78 emu/g,随DVB用量的增加而减小;DVB的加入有利于Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料的离子印迹空腔的形成和稳定。考察了不同溶液pH值、ClO4-的初始浓度、吸附时间等条件下Fe3O4@ⅡP(St-HPMA-DVB)吸附水中ClO4-的性能,发现溶液pH值能显著影响Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料对ClO4-的吸附效果,pH为3.0时效果最佳;不同DVB用量Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料对ClO4-的吸附量和选择性有影响,当DVB用量为0.5 g时,Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料的吸附量和选择性最佳;吸附机制以离子交换和静电引力为主。等温吸附线符合Langmuir模型,Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料的饱和吸附量(qm,c=76.9~111.1 mg/g)高于非离子印迹材料Fe3O4@非离子印迹聚(NIP)(St-HPMA-DVB)磁性复合材料(qm,c=62.5 mg/g)。吸附过程可在10 min内达到平衡,符合准二级动力学模型;Fe3O4@ⅡP(St-HPMA-DVB)磁性复合材料能高选择性地有效吸附水中ClO4-,对ClO4-的印迹因子α为1.8,对几种常见共存离子的选择性因子β>5.8,是潜在的高选择性吸附和回收ClO4-的功能材料。   相似文献   

15.
以N-甲基咪唑、溴代正丁烷、磷钨酸为原料制备了1-丁基-3-甲基咪唑磷钨酸离子液体[BMIM]3PW12O40,将其通过超声浸渍法负载于氨基化Fe3O4(Fe3O4-NH2),得到枣糕型结构的[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料,通过FTIR、XRD、XPS、TEM、振动样品磁强计(VSM)、SEM等对其组成、形貌等进行表征。以[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料为催化剂,以H2O2为氧化剂,催化氧化以二苯并噻吩为硫源的正辛烷模拟油样,通过单因素法分别考察了超声时间、H2O2用量、反应温度和催化剂用量等因素对脱硫效果的影响,并初步探讨了[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料催化脱硫机制。结果表明:0.5 g/L[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料超声辅助催化氧化浓度为500 mg/g模拟油样,在323 K下H2O2与二苯并噻吩的摩尔比n(O):n(S)为8:1经超声10 min时,催化脱硫率达到最佳,为88.13%;重复使用5次后,[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料对模拟油样的催化降解率仅下降了2.51%。说明该材料具有良好的催化脱硫性能,并可重复使用。催化机制初步研究表明,活性中心可能为杂多酸阴离子、Fe3O4-NH2和离子液体分别起到载体和协同增容作用。   相似文献   

16.
采用静电纺丝技术结合高温煅烧方法,以乙酰丙酮钴(Co(C5H7O2)3)为前驱物,制备了由Co3O4纳米颗粒组成的多孔纳米纤维(Co3O4 NFs),其比表面积高达83 m2·g?1,并将制得的多孔Co3O4 NFs用于锂-空气电池催化剂。多孔Co3O4 NFs为电池反应提供了充足的活性位点及反应物的传输通道,有利于电池反应的顺利进行,使电池的放电容量得到极大地提高。另外,Co3O4催化剂的加入提高了电极的催化活性,较大程度降低了电池的过电位。值得注意的是,Co3O4催化剂的加入同时调控了锂-空气电池放电产物Li2O2的形貌,得到的放电产物Li2O2尺寸更小,在电极表面分布更为均匀,该形态的Li2O2在充电过程中更容易被分解,有利于提高电池的充电效率,同时电极的体积效应也可得到极大缓解。得益于以上优势,基于多孔Co3O4 NFs/炭黑Super P (Co3O4 NFs/SP)正极的锂-空气电池的电化学性能得到较大提高,50 mA·g?1电流密度下Co3O4 NFs/SP的放电容量高达10600 mA·h·g?1,电池可实现100次的充放电循环。   相似文献   

17.
为改善氧化石墨烯(GO)/Fe3O4复合材料的分散程度,利用三苯基膦(PPh3)对GO表面进行功能化改性得到改性氧化石墨烯(GOP),然后采用共沉淀法一步合成GOP/Fe3O4复合材料。通过场发射SEM、高分辨TEM、XRD、FTIR、Raman和VSM对GOP/Fe3O4复合材料的形貌、结构和磁性能进行表征。利用矢量网络分析仪(PNA)测试了GOP/Fe3O4复合材料的电磁参数并模拟计算其对电磁波的吸收性能。结果显示:GOP/Fe3O4复合材料的最大电磁波吸收强度值达到-25.4 dB,有效吸收频宽为6.0 GHz,较未改性GO/Fe3O4复合材料均有大幅度提高。   相似文献   

18.
锂硫电池是传统锂离子电池最有前途的替代品之一,多硫化物的溶解和导电性差是制约锂硫电池应用的两个重要因素。通过水热法合成了Fe2O3-还原氧化石墨烯(RGO)-碳纳米管(CNT)复合载硫材料,并通过调节氨水浓度,实现了复合材料中Fe2O3的颗粒尺寸的有效调控,发现小尺寸的Fe2O3颗粒具有更好的吸附和催化作用。合成的Fe2O3-RGO-CNT-S正极材料在1 C倍率下首次放电容量为1 286 mA·h/g,循环500圈后剩余718 mA·h/g,每圈的容量衰减率为0.08%。在0.2、0.5、1、2和4 C倍率下的平均比容量为983、825、769、673和604 mA·h/g,具有良好的倍率性能。在5 C倍率下循环500次仍剩余527 mA·h/g,具有良好的大电流循环性能。Fe2O3-RGO-CNT-S正极材料特别适用于高性能锂硫电池,具有优异的电化学性能主要是由于R...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号