首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
氢气是一种高效的添加剂,可改善乙醇燃料的燃烧特性,为更好地应用于燃烧装置,有必要研究其层流燃烧特性。在初始压力为0.1及0.4 MPa,初始温度为400 K,等效比范围为0.7~1.4,氢气比例为20%、50%和80%下进行实验,采用定压法(constant pressure method, CPM)得到层流燃烧速度(laminar burning velocity, LBV)。对火焰发展不同阶段的火焰形貌进行研究,当火焰表面的大裂纹分裂出现小裂纹,并导致新细胞再生时,火焰变得不稳定;还研究流体动力学效应和热扩散效应对火焰固有不稳定性的影响。结果表明:LBV随着氢气比例的增加而增加,在富氢状态下其提升效果更加显著;流体动力不稳定性随着压力的增加而增加,热扩散不稳定性对压力变化不敏感;此外,增加氢气比例或初始压力将使火焰更早变得不稳定。  相似文献   

2.
氢气是一种高效的添加剂,可以改善生物质燃料的层流燃烧特性。为研究氢气对乙醇-空气预混层流火焰燃烧特性的影响,利用定容燃烧弹结合高速纹影摄像技术,系统研究了初始温度为400 K,初始压力为0.1 MPa和0.4 MPa,氢气含量为0%、10%、30%、50%、70%和90%,当量比为0.7 ~ 1.4时的氢气-乙醇-空气混合燃料的层流燃烧速度(LBV)、火焰厚度和马克斯坦长度等参数,并采用辐射校正公式使LBV更加精准。通过数值仿真构建预混火焰模型,与实验结果进行对比。结果表明,氢气比例的增加可以提高混合燃料的层流燃烧速度。当氢气比例小于50%时,LBV随氢气比例的增加线性增长。而当氢气比例大于50%,LBV随氢气的增加呈指数增长。初始压力的上升虽然降低了LBV,但提高了LBV的增长率。此外,随着氢气比例和初始压力的增加,火焰厚度减小,马克斯坦长度降低,火焰的不稳定性增强。  相似文献   

3.
在一个恒定体积的密闭容器中开展了一系列圆柱形膨胀乙醇预混火焰胞状不稳定性的数值模拟研究,并通过临界贝克莱数、扰动对数增长率和临界火焰半径等理论分析研究了乙醇预混火焰胞状不稳定性。结果表明,在初始压力1MPa、初始温度358K、当量比0.8~1.6条件下,乙醇预混火焰胞状不稳定性非单调性增加,在当量比为1.2时不稳定性最为强烈。原因是热扩散(thermal diffusion,TD)不稳定性分子扩散影响明显,随着当量比的变化而急剧变化,当量比增加,扰动对数增长率先增大后减小;相反,流体动力学不稳定性对当量比并不敏感。此外,在当量比低于1.2时,几乎保持恒定的临界贝克莱数和急剧减小的火焰厚度导致临界火焰半径大幅下降,并在1.2处达到最小值。数值模拟和理论研究显示出一致的结果。  相似文献   

4.
采用高速纹影摄像系统和定容燃烧弹对不同初始压力下(0.1~0.5,MPa)氢气燃烧的不稳定性和自加速性进行了实验研究,分析了火焰胞状不稳定性的发展过程和变化规律,分别对比了火焰轮廓及火焰传播速度的自加速表现.研究结果表明,在火焰没有达到一开始就完全胞状化之前,随初始压力的增大,氢气燃烧的不稳定性增强;胞状不稳定的火焰会出现自加速,而稳定火焰不会出现自加速;火焰的加速特性在均布的胞状结构形成后便会出现,其始点与胞状不稳定的火焰临界半径一致,始点过后,火焰的传播速度(或燃烧速度)随着燃烧半径的增加(或燃烧时间的增加)而不断地自加速.  相似文献   

5.
针对生物柴油与醇类混合燃料燃烧机理研究的需求,采用高速纹影光学诊断方法和定容燃烧弹系统试验研究了异丁醇/辛酸甲酯混合燃料的预混层流燃烧特性。测量了不同当量比和初始压力条件下的不同配比混合燃料—空气预混合气的层流燃烧火焰速度,火焰拉伸率以及马克斯坦长度。分析了燃烧初始条件及异丁醇掺混比例对混合燃料的无拉伸层流燃烧速度及火焰不稳定性的影响规律。结果表明:异丁醇/辛酸甲酯混合燃料的拉伸层流火焰传播速度和层流火焰燃烧速度随着当量比的增加先增加后减少,随着初始压力的增加而减小;马克斯坦长度随着当量比和初始压力的增加而减小;异丁醇掺混比例的增加加快了层流火焰燃烧速度,但使得火焰的不稳定性倾向增加。  相似文献   

6.
甲醇-空气-氮气混合气预混球型火焰的试验研究   总被引:1,自引:0,他引:1  
利用高速纹影摄像法在定容燃烧弹内研究了不同燃空当最比、初始压力、初始温度和气体稀释度下甲醇-空气-氮气混合气预混球型火焰的发展特性以及3种火焰锋面的不稳定性.获得了不同初始状态下的层流燃烧速度、质量燃烧流量和马克斯坦长度.高的初始压力时,火焰锋面生成的裂纹发展并形成细胞状结构.稀混合气时,浮力和电极的冷却作用对火焰的发展有重要影响.当量比在化学计量比附近时,随着初始温度的提高,流体动力学不稳定性被抑制.随着初始压力的增加,流体动力学不稳定性增强.稀释气的加入抑制了火焰锋面流体动力学的不稳定性.  相似文献   

7.
初始压力对天然气-氢气-空气混合气火焰传播特性的影响   总被引:2,自引:0,他引:2  
使用定容燃烧弹研究了不同初始压力下天然气-氢气-空气混合气的火焰传播规律,得到了初始压力、掺氢比和燃空当量比对无拉伸层流燃烧速率、质量燃烧流量的影响,结合高速纹影图片分析了影响火焰稳定性的因素(马克斯坦长度、火焰面两侧密度比和火焰厚度).结果表明,掺氢天然气无拉伸层流燃烧速率以及火焰的不稳定性受掺氢比、初始压力和燃空当量比的综合影响.结合高速纹影图片,得出火焰的稳定性会随初始压力的增加而减小;在相同的燃空当量比和掺氢比下,初始压力对密度比的影响不大,但是对火焰厚度的影响比较明显.  相似文献   

8.
天然气/氢气燃烧特性研究   总被引:4,自引:0,他引:4  
在定容燃烧弹中研究了不同氢气掺混比例、燃空当量比和初始压力下的大然气/氢气混合气的燃烧特性,建立了适合用于容弹计算的准维双区模型。研究结果表明:在各种当量比和初始压力下,随着掺氢比例的增加,混合气的质量燃烧速率明显增加,燃烧持续期和火焰发展期娃著缩短。随着掺氢比例的增加,短的燃烧持续期所对应的当量比范围变宽,稀混合气和浓混合气条件下天然气掺氢对火焰发展期缩短的效果更明显。化学计量比附近(1.0—1.1)掺氢燃烧对燃烧最大压力值影响不大,浓混合气(燃空当量比大于1.1)和稀混合气燃烧时,随着掺氢比例的增加,最大燃烧压力值增加。  相似文献   

9.
采用高速纹影系统和定容燃烧弹对氢气预混层流燃烧球形膨胀火焰的拉伸进行了研究.分别改变燃空当量比(0.3~4.0)、初始温度(283~400,K)、初始压力(0.05~0.30,MPa)的条件下对比分析拉伸的变化规律,以及拉伸对火焰速度、燃烧速度的影响规律,还解释了拉伸对不等扩散不稳定和流体力学不稳定的影响机理.研究结果表明,随着半径的增大,拉伸率成幂函数关系逐渐减小,其指数和系数值随燃空当量比、温度、压力的变化有明显的变化规律;火焰拉伸的存在使得火焰速度和燃烧速度发生改变,同时它还是火焰不等扩散不稳定和流体力学不稳定发生的前提条件.  相似文献   

10.
针对基于燃烧的微小型动力装置存在燃烧效率低、火焰传播速度慢的问题,设计了一个可视化的、特征间距仅为0.45 mm的微尺度定容燃烧室,实验比较了0~1的掺氢比例下,丙烷/氢气/空气预混火焰在该燃烧室内的传播以及加速过程.实验发现没有掺氢时,丙烷/空气预混火焰需要在0.25 MPa初始压力下才能够传播;当掺氢比例为0.2时...  相似文献   

11.
A comprehensive measurement and investigation of the cellularization of methanol/hydrogen flame is important for the thorough understanding of the transition of turbulent flame. In this work, a constant volume combustion bomb with schlieren photography technology is used to study the flame evolution of methanol/hydrogen fuel. By investigating the flames smooth laminar flame to a certain degree of cellular flame, the effect of hydrogen addition on the cellular instability of the hydrogen/methanol spherical flame is revealed. The experiments were conducted with different hydrogen mixing ratios (0%–80%) at different equivalence ratios (0.8–1.5) under a series of initial temperature (375 K–450 K) and pressure (1.0 bar–3.0 bar). The results showed that the process of flame cellular instability advanced in general as the hydrogen mixing ratio increased. The promoting effect of hydrogen addition was more significant in lean flames. The cellularization in lean flames was dominated by the instability of thermal diffusion, while that in the rich flames was dominated by the hydrodynamic instability. The initial pressure impacts the flame cellar instability mainly through the hydrodynamic instability.  相似文献   

12.
We experimentally investigated the cellular instabilities of expanding spherical propagation of hydrogen–air, methane–air, and propane–air flames. Using image-thresholding technique, the formations and developments of a cell on a flame surface were investigated. The size of the observed cell due to the hydrodynamic instability was larger than those generated by the diffusional–thermal instability. The critical flame radius and critical Peclet number for the onset of instability were evaluated. These critical values for hydrogen–air and methane–air flames increased with increasing concentration. The values decreased with increasing initial pressure because the flame thickness decreased with increasing initial pressure. The ratio of the increase in the burning velocity increased with increasing initial pressure, although that of the hydrogen–air flames only increased with decreasing concentration. The results demonstrated that acceleration of the flame speed is affected by the intensity of the diffusional–thermal and hydrodynamic instabilities.  相似文献   

13.
The extreme explosiveness and high flame velocity of hydrogen challenge its application. Overcoming these challenges requires improving the fundamental flame characteristics of H2/O2 mixtures. In this study, the propagation characteristics of H2/O2 flames are investigated. The laminar burning velocity (LBV) is evaluated using nonlinear extrapolation. The empirical relations of LBV are given with the equivalence ratio (ER) and initial mixture pressure (IMP). The LBV increases first and then decreases as the ER increases and reaches its maximum value at the ER slightly higher than 1.0 (φ = 1.1–1.2). The LBV increases monotonically with increasing IMP. The critical instability radius and Markstein length increase as the ER increases, while decreasing with the IMP increase. The flame thickness decreases significantly with increasing IMP. The flame remains stable and smooth throughout the propagation process for all examined ERs only at the lower IMPs of 0.1 atm and 0.3 atm.  相似文献   

14.
The flame stability of biogas blended with hydrogen combustion was experimentally studied in the constant volume combustion bomb. The variations of characteristic parameters of flame instability and effect of pressure and fuel component proportion on flame shape were analyzed. The experimental results show that the flame instability increases with the decrease of equivalence ratio, and the global flame stability decreases with increase of CO2 fractions. With increase of initial pressure of biogas and hydrogen mixture, Markstein length decreases, hydrodynamic instability decreases, but the thermal mass diffusion instability has no effect. The effect of increase of the hydrogen ratio on flame stability is more obvious, with the increase of initial pressure and hydrogen ratio together, both hydrodynamic instability and thermal mass diffusion instability increase. This research can provide experimental basis for the design and development of biogas blended with hydrogen engines.  相似文献   

15.
The characteristics of hydrogen/air flame were studied by using the spherical expanding flame propagated in a constant volume chamber. The influence of ignition induced blast wave and the flame instability on flame propagation was investigated. The nonlinear evaluation method for laminar flame parameter evaluation was established. By using the nonlinear evaluation method and the experimental results of flame propagation, the laminar flame speed and Markstein length were extracted and the difference between the nonlinearly evaluated laminar flame speed and the linearly evaluated one was analyzed. The influence of initial pressure and equivalence ratio on laminar flame speed and flame thickness was investigated. The laminar flame speed varies with equivalence ratio and initial pressure. There exists an equivalence ratio at which the laminar flame speed gets its maximum value. And there also exists an initial pressure at which the laminar flame speed gets its maximum value. The critical radius, Markstein length and flame instability of hydrogen/air flame with different equivalence ratio at different initial pressure had been studied. In hydrogen/air flame the flame stability decreases with the increase of initial pressure, while it increases with the increase of equivalence ratio. The global stability of flame is determined by the combination of the stabilizing effect of stretch effect, thermodiffusive instability mechanism and hydrodynamic instability mechanism.  相似文献   

16.
Experiments in outwardly propagating spherical flame were carried out to investigate unstretched laminar burning velocity and flame instability by adding 25%, 50%, and 75% syngas to DME-air mixtures at room temperature and elevated pressures up to 0.3 MPa. The measured unstretched laminar burning velocities were compared to numerical predictions using PREMIX code with Zhao reaction mechanism and good agreement was found between them. Flame instability was also investigated through evaluating Markstein length and cellular instability. Behavior of the Markstein lengths was described well by the deficient reactant Lewis number and highly affected by the amount of syngas addition to the DME-air mixtures. Effects of syngas addition and increased initial pressure on cell formation on the flame surface were also examined through evaluating the Lewis number, flame thickness, and thermal expansion ratio. Regardless of syngas addition, the cellular instability was enhanced mainly by the hydrodynamic instability due to decreased flame thickness while diffusional-thermal instability was minor.  相似文献   

17.
Taking maximum flame propagation velocity, maximum explosion pressure, maximum rate of pressure rise and time-average of rising pressure impulse as index, this paper is aimed at evaluating the inerting effects of carbon dioxide on confined hydrogen explosion by varying initial pressure, carbon dioxide addition and equivalence ratio. The results indicated that under enhancing hydrodynamic instability, the stronger flame destabilization occurs with the increase of initial pressure. At Φ = 0.8 and Φ = 1.0, the destabilization effect of thermodiffusive instability continues to increase with the increase of carbon dioxide addition. At all equivalence ratios, the destabilization effect of hydrodynamic instability decreases monotonously with the increase of carbon dioxide addition. All of maximum flame propagation velocity, maximum explosion pressure, maximum rate of pressure rise and time-average of rising pressure impulse reach the peak value at Φ = 1.5, and decrease significantly with increasing carbon dioxide addition. The inerting effect of carbon dioxide could be attributed to the reduction of thermal diffusivity, flame temperature and active radicals. The chemical effect of carbon dioxide reaches the peak value at Φ = 1.0. With the increase of carbon dioxide addition, the chemical effect continues to decrease at Φ = 0.8 and Φ = 1.0, and increase monotonously at Φ = 2.5.  相似文献   

18.
Experiments were conducted in a closed vessel using Schlieren system to study the cellular instabilities of hydrogen-air premixed flames at different equivalence ratios (from 0.6 to 2.5), initial temperatures (from 300 K to 450 K), and initial pressures (from 0.1 MPa to 0.3 MPa). The cellular instabilities of hydrogen-air flames were interpreted and evaluated in the viewpoint of the diffusive-thermal and hydrodynamic instabilities. Also, critical flame radius and critical Peclet number were measured. The results showed that for lean hydrogen-air flames, the cellular instabilities are dominantly influenced by the diffusive-thermal instability; for stoichiometric and rich hydrogen-air flames, the cellular instabilities are just influenced by the hydrodynamic instability. Critical flame radius is increased with the increase of equivalence ratio and/or initial temperature, and is decreased with the increase of initial pressure. Critical Peclet number is increased with the increase of equivalence ratio, and is insensitive to initial temperature and initial pressure.  相似文献   

19.
An experimental study was conducted using outwardly propagating flame to evaluate the laminar burning velocity and flame intrinsic instability of diluted H2/CO/air mixtures. The laminar burning velocity of H2/CO/air mixtures diluted with CO2 and N2 was measured at lean equivalence ratios with different dilution fractions and hydrogen fractions at 0.1 MPa; two fitting formulas are proposed to express the laminar burning velocity in our experimental scope. The flame instability was evaluated for diluted H2/CO/air mixtures under different hydrogen fractions at 0.3 MPa and room temperature. As the H2 fraction in H2/CO mixtures was more than 50%, the flame became more unstable with the decrease in equivalence ratio; however, the flame became more stable with the decrease in equivalence ratio when the hydrogen fraction was low. The flame instability of 70%H2/30%CO premixed flames hardly changed with increasing dilution fraction. However, the flames became more stable with increasing dilution fraction for 30%H2/70%CO premixed flames. The variation in cellular instability was analyzed, and the effects of hydrogen fraction, equivalence ratio, and dilution fraction on diffusive-thermal and hydrodynamic instabilities were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号