首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 67 毫秒
1.
针对传统的知识蒸馏方法在图像分类任务中对知识蒸馏的效率不高、阶段训练方式单一、训练过程复杂且难收敛的问题,设计了一种基于多阶段多生成对抗网络(MS-MGANs)的互学习知识蒸馏方法。首先,将整个训练过程划分为多个阶段,得到不同阶段的老师模型,用于逐步指导学生模型,获得更好的精度效果;其次,引入逐层贪婪策略取代传统的端到端训练模式,通过基于卷积块的逐层训练来减少每阶段迭代过程中需优化的参数量,进一步提高模型蒸馏效率;最后,在知识蒸馏框架中引入生成对抗结构,使用老师模型作为特征辨别器,使用学生模型作为特征生成器,促使学生模型在不断模仿老师模型的过程中更好地接近甚至超越老师模型的性能。在多个公开的图像分类数据集上对所提方法和其他流行的知识蒸馏方法进行对比实验,实验结果表明所提知识蒸馏方法具有更好的图像分类性能。  相似文献   

2.
针对基于深度学习的人脸识别模型难以在嵌入式设备进行部署和实时性能差的问题,深入研究了现有的模型压缩和加速算法,提出了一种基于知识蒸馏和对抗学习的神经网络压缩算法。算法框架由三部分组成,预训练的大规模教师网络、轻量级的学生网络和辅助对抗学习的判别器。改进传统的知识蒸馏损失,增加指示函数,使学生网络只学习教师网络正确识别的分类概率;鉴于中间层特征图具有丰富的高维特征,引入对抗学习策略中的判别器,鉴别学生网络与教师网络在特征图层面的差异;为了进一步提高学生网络的泛化能力,使其能够应用于不同的机器视觉任务,在训练的后半部分教师网络和学生网络相互学习,交替更新,使学生网络能够探索自己的最优解空间。分别在CASIA WEBFACE和CelebA两个数据集上进行验证,实验结果表明知识蒸馏得到的小尺寸学生网络相较全监督训练的教师网络,识别准确率仅下降了1.5%左右。同时将本研究所提方法与面向特征图知识蒸馏算法和基于对抗学习训练的模型压缩算法进行对比,所提方法具有较高的人脸识别准确率。  相似文献   

3.
在图像分类和工业视觉检测过程中,缺陷样本量少导致神经网络分类器训练效率低及检测精度差,直接采用原始的离散标签又无法使网络分类器学习到不同类别间的相似度信息。针对上述问题,在区域丢弃算法的基础上,提出一种基于生成对抗网络的知识蒸馏数据增强算法。使用补丁对丢弃区域进行填补,减少区域丢弃产生的非信息噪声。在补丁生成网络中,保留生成对抗网络的编码器-解码器结构,利用编码器卷积层提取特征,通过解码器对特征图上采样生成补丁。在样本标签生成过程中,采用知识蒸馏算法中的教师-学生训练模式,按照交叉检验方式训练教师模型,根据教师模型生成的软标签对学生模型的训练进行指导,提高学生模型对特征的学习能力。实验结果表明,与区域丢弃算法相比,该算法在CIFAR-100、CIFAR-10数据集图像分类任务上的Top-1 Err、Top-5 Err分别降低3.1、0.8、0.5、0.6个百分点,在汽车转向器轴承数据集语义分割任务上的平均交并比和识别准确率分别提高2.8、2.3个百分点。  相似文献   

4.
计算机视觉领域倾向使用深度神经网络完成识别任务,但对抗样本会导致网络决策异常。为了防御对抗样本,主流的方法是对模型进行对抗训练。对抗训练存在算力高、训练耗时长的缺点,其应用场景受限。提出一种基于知识蒸馏的对抗样本防御方法,将大型数据集学习到的防御经验复用到新的分类任务中。在蒸馏过程中,教师模型和学生模型结构一致,利用模型特征图向量作为媒介进行经验传递,并只使用干净样本训练。使用多维度特征图强化语义信息的表达,并且提出一种基于特征图的注意力机制,将特征依据重要程度赋予权重,增强蒸馏效果。所提算法在Cifar100、Cifar10等开源数据集上进行实验,使用FGSM(fast gradient sign method)、PGD(project gradient descent)、C&W(Carlini-Wagner attack)等算法进行白盒攻击,测试实验效果。所提方法在Cifar10干净样本的准确率超过对抗训练,接近模型在干净样本正常训练的准确率。在L2距离的PGD攻击下,所提方法效果接近对抗训练,显著高于正常训练。而且其学习成本小,即使添加注意力机制和多维度特征图等优化方案,...  相似文献   

5.
何涛  俞舒曼  徐鹤 《计算机工程》2022,48(4):165-172
生成对抗网络广泛应用于图像去雾领域,但通常需要较大的计算量和存储空间,从而限制了其在移动设备上的应用。针对该问题,提出一种基于条件生成对抗网络与知识蒸馏的去雾方法KD-GAN。将频率信息作为去雾的附加约束条件,通过傅里叶变换、拉普拉斯算子、高斯滤波器分别滤除原始图像的高频或低频信息,生成对应的高频和低频图像,并将融合得到的图像作为判别器的输入,以改进雾天图像的去雾效果。在此基础上,将原重型教师网络的知识迁移到具有较少权值参数的轻量型学生网络生成器中,并对轻量型学生网络进行训练,使其以更快的收敛速度达到与教师网络相近的去雾性能。在OTS和HSTS数据集上的实验结果验证了该方法的有效性,在学生网络的参数规模仅为教师网络1/2的条件下,学生网络在迭代第3×104次时,生成器输出图像的峰值信噪比和结构相似性已接近于教师网络迭代第5×104次时的数值,训练速度加快了约1.67倍。  相似文献   

6.

知识蒸馏(knowledge distillation, KD)通过最大化近似输出分布使“教师网络”指导“学生网络”充分训练,成为大规模深度网络近端迁移、部署及应用的重要技术. 然而,隐私保护意识增强与传输问题加剧使网络训练数据难以获取. 如何在Data-Free的自由环境下,保证压缩网络准确率成为重要的研究方向. Data-Free学生网络学习(data-free learning of student networks, DAFL)模型,建立“教师”端生成器获得与预训练网络分布近似的伪数据集,通过知识蒸馏训练“学生网络”. 然而,该框架中生成器构建及优化仍存在2个问题:1)过度信任“教师网络”对缺失真实标签伪样本的判别结果,同时,“教师网络”与“学生网络”优化目标不同,使“学生网络”难以获得准确、一致的优化信息;2)仅依赖于“教师网络”训练损失,导致数据特征多样性缺失,降低“学生网络”泛化性. 针对这2个问题,提出双生成器网络架构DG-DAFL(double generators-DAFL),分别建立“教师”与“学生”端生成器并同时优化,实现网络任务与优化目标一致,提升“学生网络”判别性能. 进一步,增加双生成器样本分布差异损失,利用“教师网络”潜在分布先验信息优化生成器,保证“学生网络”识别准确率并提升泛化性. 实验结果表明,该方法在Data-Free环境中获得了更为有效且更鲁棒的知识蒸馏效果. DG-DAFL方法代码及模型已开源:相似文献   


7.
邬龙  黎塔  王丽  颜永红 《软件学报》2019,30(S2):25-34
为了进一步利用近场语音数据来提高远场语音识别的性能,提出一种基于知识蒸馏和生成对抗网络相结合的远场语音识别算法.该方法引入多任务学习框架,在进行声学建模的同时对远场语音特征进行增强.为了提高声学建模能力,使用近场语音的声学模型(老师模型)来指导远场语音的声学模型(学生模型)进行训练.通过最小化相对熵使得学生模型的后验概率分布逼近老师模型.为了提升特征增强的效果,加入鉴别网络来进行对抗训练,从而使得最终增强后的特征分布更逼近近场特征.AMI数据集上的实验结果表明,该算法的平均词错误率(WER)与基线相比在单通道的情况下,在没有说话人交叠和有说话人交叠时分别相对下降5.6%和4.7%.在多通道的情况下,在没有说话人交叠和有说话人交叠时分别相对下降6.2%和4.1%.TIMIT数据集上的实验结果表明,该算法获得了相对7.2%的平均词错误率下降.为了更好地展示生成对抗网络对语音增强的作用,对增强后的特征进行了可视化分析,进一步验证了该方法的有效性.  相似文献   

8.
在传统知识蒸馏框架中,教师网络将自身的知识全盘传递给学生网络,而传递部分知识或者特定知识的研究几乎没有。考虑到工业现场具有场景单一、分类数目少的特点,需要重点评估神经网络模型在特定类别领域的识别性能。基于注意力特征迁移蒸馏算法,提出了三种特定知识学习算法来提升学生网络在特定类别分类中的分类性能。首先,对训练数据集作特定类筛选以排除其他非特定类别的训练数据;在此基础上,将其他非特定类别视为背景并在蒸馏过程中抑制背景知识,从而进一步减少其他无关类知识对特定类知识的影响;最后,更改网络结构,即仅在网络高层抑制背景类知识,而保留网络底层基础图形特征的学习。实验结果表明,通过特定知识学习算法训练的学生网络在特定类别分类中能够媲美甚至超越参数规模六倍于它的教师网络的分类性能。  相似文献   

9.
意图分类是一种特殊的短文本分类方法,其从传统的模板匹配方法发展到深度学习方法,基于B E RT模型的提出,使得大规模的预训练语言模型成为自然语言处理领域的主流方法.然而预训练模型十分庞大,且需要大量的数据和设备资源才能完成训练过程.提出一种知识蒸馏意图分类方法,以预训练后的B E RT作为教师模型,文本卷积神经网络Te...  相似文献   

10.
朱海琦  李宏  李定文 《计算机工程》2021,47(8):271-276,283
将卷积神经网络引入生成对抗网络可提高所生成图像的质量,但网络的感受野较小且难以学习各个特征通道之间的重要关系.在SinGAN网络的基础上,提出一种能从单幅图像中学习的生成对抗网络模型.在SinGAN网络的生成器和鉴别器中引入Inception V2模块以增加网络宽度扩大感受野,采用多个卷积核提取图像特征并进行特征融合,...  相似文献   

11.
对抗样本的出现,对深度学习的鲁棒性提出了挑战.随着边缘智能的兴起,如何在计算资源有限的边缘设备上部署鲁棒的精简深度学习模型,是一个有待解决的问题.由于精简模型无法通过常规的对抗训练获得良好的鲁棒性,提出两阶段对抗知识迁移的方法,先将对抗知识从数据向模型迁移,然后将复杂模型获得的对抗知识向精简模型迁移.对抗知识以对抗样本的数据形式蕴含,或以模型决策边界的形式蕴含.具体而言,利用云平台上的GPU集群对复杂模型进行对抗训练,实现对抗知识从数据向模型迁移;利用改进的蒸馏技术将对抗知识进一步从复杂模型向精简模型的迁移,最后提升边缘设备上精简模型的鲁棒性.在MNIST,CIFAR-10和CIFAR-100这3个数据集上进行验证,实验结果表明:提出的这种两阶段对抗知识迁移方法可以有效地提升精简模型的性能和鲁棒性,同时加快训练过程的收敛性.  相似文献   

12.
张钊  吉建民  陈小平 《计算机应用》2019,39(9):2489-2493
知识表示学习目的是将知识图谱中符号化表示的关系与实体嵌入到低维连续向量空间。知识表示模型在训练过程中需要大量负样本,但多数知识图谱只以三元组的形式存储正样本。传统知识表示学习方法中通常使用负采样方法,这种方法生成的负样本很容易被模型判别,随着训练的进行对性能提升的贡献也会越来越小。为了解决这个问题,提出了对抗式负样本生成器(ANG)模型。生成器采用编码-解码架构,编码器读入头或尾实体被替换的正样本作为上下文信息,然后解码器利用编码器提供的编码信息为三元组填充被替换的实体,从而构建负样本。训练过程采用已有的知识表示学习模型与生成器进行对抗训练以优化知识表示向量。在链接预测和三元组分类任务上评估了该方法,实验结果表明该方法对已有知识表示学习模型在FB15K237、WN18和WN18RR数据集上的链接预测平均排名与三元组分类准确度都有提升。  相似文献   

13.
陈嘉言  任东东  李文斌  霍静  高阳 《软件学报》2024,35(5):2414-2429
小样本学习旨在模拟人类基于少数样例快速学习新事物的能力, 对解决样本匮乏情境下的深度学习任务具有重要意义. 但是, 在诸多计算资源有限的现实任务中, 模型规模仍可能限制小样本学习的广泛应用. 这对面向小样本学习的轻量化任务提出了现实的需求. 知识蒸馏作为深度学习领域广泛使用的辅助策略, 通过额外的监督信息实现模型间知识迁移, 在提升模型精度和压缩模型规模方面都有实际应用. 首先验证知识蒸馏策略在小样本学习模型轻量化中的有效性. 并结合小样本学习任务的特点, 针对性地设计两种新的小样本蒸馏方法: (1)基于图像局部特征的蒸馏方法; (2)基于辅助分类器的蒸馏方法. 在miniImageNet和TieredImageNet数据集上的相关实验证明所设计的新的蒸馏方法相较于传统知识蒸馏在小样本学习任务上具有显著优越性.  相似文献   

14.
在机器翻译模型的构建和训练阶段,为了缓解因端到端机器翻译框架在训练时采用最大似然估计原理导致的翻译模型的质量不高的问题,本文使用对抗学习策略训练生成对抗网络,通过鉴别器协助生成器的方式来提高生成器的翻译质量,通过实验选择出了更适合生成器的机器翻译框架Transformer,更适合鉴别器的卷积神经网络,并且验证了对抗式训练对提高译文的自然度、流利度以及准确性都具有一定的作用.在模型的优化阶段,为了缓解因蒙汉平行数据集匮乏导致的蒙汉机器翻译质量仍然不理想的问题,本文将Dual-GAN (dual-generative adversarial networks,对偶生成对抗网络)算法引入了蒙汉机器翻译中,通过有效的利用大量蒙汉单语数据使用对偶学习策略的方式来进一步提高基于对抗学习的蒙汉机器翻译模型的质量.  相似文献   

15.
为实现图像显著区域或目标的低级特征与语义信息有意义的结合,以获取结构更完整、边界更清晰的显著性检测结果,提出一种结合双流特征融合及对抗学习的彩色图像显著性检测(SaTSAL)算法.首先,以VGG-16和Res2Net-50为双流异构主干网络,实现自底向上、不同级别的特征提取;之后,分别针对每个流结构,将相同级别的特征图...  相似文献   

16.
零样本学习旨在识别具有少量、甚至没有训练样本的未见类,这些类与可见类遵循不同的数据分布.最近,随着深度神经网络在跨模态生成方面的成功,使用合成的样本对未见数据进行分类取得了巨大突破.现有方法通过共享生成器和解码器,联合传统生成对抗网络和变分自编码器来实现样本的合成.然而,由于这2种生成网络产生的数据分布不同,联合模型合成的数据遵循复杂的多域分布.针对这个问题,提出跨域对抗生成网络(CrossD-AGN),将传统生成对抗网络和变分自编码器有机结合起来,基于类级语义信息为未见类合成样本,从而实现零样本分类.提出跨域对抗学习机制,引入2个对称的跨域判别器,通过判断合成样本属于生成器域分布还是解码器域分布,促使联合模型中的生成器/解码器不断优化,提高样本合成能力.在多个真实数据集上进行了广泛的实验,结果表明了所提出方法在零样本学习上的有效性和优越性.  相似文献   

17.
知识超图作为知识图谱的拓展,对多元关系事实具有良好表达能力.利用知识超图对现实世界中已知事实进行建模,并通过链接预测发现未知事实成为当前研究热点.在现有知识超图(知识图谱)链接预测方法中,构建样本真实标签与预测标签间的损失函数是关键步骤,其中负样本对链接预测模型的训练具有极大的影响.将知识图谱链接预测的负采样方法(如均匀随机负采样)用于知识超图链接预测会面临负样本质量低下、复杂度过高等问题.对此,设计了面向知识超图链接预测的生成对抗负采样方法HyperGAN,通过对抗训练生成高质量负样本以解决“零损失”问题,从而提升链接预测模型的准确度.HyperGAN方法无需预训练,因此在辅助链接预测模型进行训练时相比现有负采样方法具有更高的效率.在多个真实数据集上的对比实验表明:HyperGAN在性能与效率方面均优于基线方法.此外,具体案例分析及定量分析亦验证了HyperGAN方法在提升负样本质量方面的有效性.  相似文献   

18.
基于生成对抗网络的模仿学习综述   总被引:1,自引:0,他引:1  
模仿学习研究如何从专家的决策数据中进行学习,以得到接近专家水准的决策模型.同样学习如何决策的强化学习往往只根据环境的评价式反馈进行学习,与之相比,模仿学习能从决策数据中获得更为直接的反馈.它可以分为行为克隆、基于逆向强化学习的模仿学习两类方法.基于逆向强化学习的模仿学习把模仿学习的过程分解成逆向强化学习和强化学习两个子过程,并反复迭代.逆向强化学习用于推导符合专家决策数据的奖赏函数,而强化学习基于该奖赏函数来学习策略.基于生成对抗网络的模仿学习方法从基于逆向强化学习的模仿学习发展而来,其中最早出现且最具代表性的是生成对抗模仿学习方法(Generative Adversarial Imitation Learning,简称GAIL).生成对抗网络由两个相对抗的神经网络构成,分别为判别器和生成器.GAIL的特点是用生成对抗网络框架求解模仿学习问题,其中,判别器的训练过程可类比奖赏函数的学习过程,生成器的训练过程可类比策略的学习过程.与传统模仿学习方法相比,GAIL具有更好的鲁棒性、表征能力和计算效率.因此,它能够处理复杂的大规模问题,并可拓展到实际应用中.然而,GAIL存在着模态崩塌、环境交互样本利用效率低等问题.最近,新的研究工作利用生成对抗网络技术和强化学习技术等分别对这些问题进行改进,并在观察机制、多智能体系统等方面对GAIL进行了拓展.本文先介绍了GAIL的主要思想及其优缺点,然后对GAIL的改进算法进行了归类、分析和对比,最后总结全文并探讨了可能的未来趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号