首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为了进一步溯源时栅位移传感器磁场耦合过程引起的误差,对时栅位移传感器在构造场中的耦合特性进行研究,并研制了一种基于指数形平面线圈结构的新型直线时栅位移传感器。建立传感器工程构造磁场的数学模型,分析传感器耦合间隙对线圈耦合平面磁场分布的影响,研究不同形状平面线圈的耦合特性;根据传感器的耦合特性,构建了一种新型直线时栅位移传感器测量模型,对该模型进行了电磁场有限元仿真和仿真误差分析,得出该结构最佳感应间隙为0.4 mm;对传感器的结构误差进行了溯源分析,进一步优化传感器的结构;搭建实验平台,利用双层PCB绕线工艺加工传感器定尺和动尺,对优化前后的传感器样机开展对比实验。实验结果表明,设计的基于指数形平面线圈结构的新型直线时栅位移传感器可以有效抑制传感器的四次误差,新研制的传感器样机的原始测量精度在原有的基础上提高了45.8%。  相似文献   

2.
针对现有时栅角位移传感器采用漆包线绕制工艺加工线圈,导致线圈布线不均且容易随时间发生变化进而影响测量精度的问题,提出一种基于PCB技术的新型时栅角位移传感器。该传感器通过在PCB基板的不同层上布置特定形状的激励线圈和感应线圈,形成两个完全相同并沿圆周空间正交的传感单元;当在两传感单元的激励线圈中分别通入时间正交的两相激励电流后,通过导磁定子基体和具有特定齿、槽结构的导磁转子对传感单元内的磁场实施精确约束,使两传感单元的感应线圈串联输出初相角随转子转角变化的正弦感应信号;最后通过高频时钟脉冲插补初相角实现精密角位移测量。利用有限元分析软件对传感器进行了建模和仿真。根据仿真模型制作了传感器实物,开展了验证实验,并对实验中角位移测量误差的频次和来源进行了详细分析。经过标定和补偿,最终获得了整周范围内误差在-2.82″~2.02″的时栅角位移传感器。理论推导、仿真分析和实验验证均表明,该传感器不仅能实现精密角位移测量,还能在激励线圈和感应线圈空间极距和信号质量不变的情况下,将位移测量的分辨力从信号源头提高1倍,且结构简单稳定、极易实现,特别适用于环境恶劣的工业现场。  相似文献   

3.
针对时栅角位移传感器定子和转子的加工误差对测量精度的影响,利用多测头法分离出多次谐波成分并加以修正.根据场式时栅角位移传感器的误差特点,针对32对极场式时栅进行了理论分析,分离并消除64次及64的整数倍次以外的谐波分量.定子和转子线槽的分度误差被修正以后,时栅角位移传感器测量精度达到了2′的预定指标.  相似文献   

4.
为提高嵌入式时栅角位移传感器测量精度,从传感信号形成机理出发,对短周期误差成因进行了详细分析。通过对绕组等效分析和激励信号分析,确定了短周期误差的主要特性为一次和二次误差,一次误差来源为零点残余误差和直流分量误差,二次误差来源为激励信号正交误差。针对短周期误差补偿,提出了基于超限学习机的误差补偿方法,通过对测量值与真实值样本的训练得到模型最优参数,根据模型参数建立短周期误差模型,利用所得误差模型实现对短周期误差的补偿。实验结果表明,短周期误差分析结果与传感器实际误差特性一致,采用该补偿方法传感器短周期误差大幅度降低,降低了约96%。对比和重复性实验表明,该方法与谐波补偿法相比精度提高了约1倍,误差补偿效果更优,同时方法具有良好的测量稳定性,对提高嵌入式时栅角位移传感器的测量精度具有重要的理论和现实意义。  相似文献   

5.
针对现有多相激励时栅角位移传感器在小体积时无法设置更多极对数进一步提升稳定性,导致精度和动态性能指标无法得到提升等问题,提出一种单相激励电容式时栅角位移测量方法。该方法采用单相激励耦合成四路空间正交的驻波信号,通过电路实现行波构造,从而实现角位移测量。文中介绍了多相激励时栅传感器存在的问题、单相激励时栅的测量原理,完成了传感器样机的研制,并通过实验验证该原理的有效性。实验结果表明,相同尺寸和相同电极数量情况下,单相激励传感器的精度和动态性能指标优于多相激励传感器,单相激励传感器精度为±20″,稳定性为10″,400 rpm转速下速度波动为±1.25%,跟随误差为±2.5″,满足直驱电机的使用要求。  相似文献   

6.
针对前期研制平面磁场式直线时栅位移传感器存在的端部效应致使匀速运动坐标系均匀度降低的问题,提出了一种抑制平面线圈端部效应的方法,构建均匀性更高的交变磁场,并研制出了一种可抑制端部效应的新型平面直线时栅位移传感器。建立了平面线圈励磁数学模型,分析端部效应对均匀磁场的影响程度,提出了双层互补式激励线圈结构抑制端部效应方案;建立了新型平面直线时栅位移测量模型,采用空间正交的双列激励单元,实现了行波信号的合成并通过仿真验证了方案的有效性;建立了仿真模型,分析端部效应对传感器测量精度的影响,并优化传感器参数;基于PCB工艺制造了量程为228 mm的新型传感器样机并与传统传感器样机展开了对比实验,实验结果表明,新型平面直线时栅位移传感器能够有效地抑制传感器的端部效应,提高测量精度,传感器对极内原始测量精度从±20μm提高到±10μm。  相似文献   

7.
针对研制时栅位移传感器过程中的误差标定环节,常规光栅传感器精度不满足要求的问题,采用激光干涉仪作为误差标定基准,自主研制了基于激光干涉仪的直驱式时栅角位移传感器误差自动标定与修正系统。利用时栅角位移传感器的多测头结构与误差曲线等间距周期性分布的特性,以一个对极的误差曲线重构传感器整周的误差曲线,采用多项式拟合算法构建了时栅角位移传感器的误差修正模型。实验结果表明,误差自动标定与修正系统可以快速、准确地对时栅角位移传感器进行自动误差标定与修正,修正后的时栅角位移传感器的整周误差达到±0.43″。  相似文献   

8.
针对现有时栅位移传感器误差补偿模型补偿效果受标定实验台速度影响的问题,提出了一种基于三次样条插值-傅里 叶谐波合成的误差补偿模型。 首先,根据时栅位移传感器多测头信号感应原理与整周误差曲线等间距周期性分布特性,分析短 周期误差受标定实验台速度影响,引入传感器等间距采样的“错位”误差,该误差将直接影响构建的短周期误差补偿模型的补 偿效果;其次,利用三次样条插值法准确定位误差采样位置,精确重构短周期误差曲线;最后,通过重构的短周期误差曲线与傅 里叶谐波补偿法建立了短周期误差补偿模型,提高了时栅位移传感器误差补偿效果。 实验结果表明,采用本补偿模型后传感器 短周期误差峰峰值降至 1. 7″;本补偿模型短周期误差补偿效果优于传统基于傅里叶谐波补偿法构建的补偿模型,标定实验台速 度为 3 r/ min 时补偿效果可提高 56. 0% ,既能满足传感器动态标定的工作效率,也能满足传感器的高精度误差标定需求。  相似文献   

9.
针对传统的大尺寸栅式角位移传感器在实现绝对定位的同时难以兼顾高精度测量的问题,在前期研究基础上设计了基于交变电场的大尺寸绝对式角位移传感器。传感器利用单列式传感结构实现高精度测量,设计内、外圈两圈结构在整周内刚好相差一对极以实现绝对定位。研制的传感器样机内径为100 mm、外径为154 mm,经实验测试并分析,其对极内呈现的二次谐波误差是由传感器不圆度所导致,四次谐波误差是因传感器结构缝宽比设计不合理而形成。为此,通过加长定尺极片、缩短动尺极片以削弱二次谐波误差,并设计缝宽比为1∶1以减小四次误差。优化后的传感器整周测量精度达到5″,对极内测量精度达到±1.5″。  相似文献   

10.
动态测量下的谐波误差成分是制约高精度、高分辨率的时栅角位移传感器在动态测量领域运用的主要原因之一。针对动态测量下时栅角位移传感器中的谐波抑制难题,首先简述了时栅角位移传感器的系统模型,其次建立了时栅角位移传感器的动态误差数学模型,之后解释了传感器的动态误差产生机理,阐述了自适应卡尔曼滤波的基本原理,最后构建了基于自适应卡尔曼滤波的时栅角位移传感器的动态误差抑制模型。通过仿真分析证明了时栅角位移传感器在匀速和变速运行情况下,经自适应卡尔曼滤波后,动态误差均降低了约70%,且随着传感器转速的提高,对谐波误差的抑制效果越明显。在实验运用中,该滤波算法对时栅角位移传感器的测量值有很好的实时预测性,传感器能够更快速且稳定运行,在100 r/min的转速下测量误差降低约80%。结果证实了自适应卡尔曼滤波在时栅角位移传感器的动态谐波误差抑制中有着显著的作用,能极大地提高传感器的动态测量精度。  相似文献   

11.
针对现有高精度位移传感器栅距小导致对制造和使用环境要求苛刻的问题,提出一种采用高频时钟脉冲作为测量基准,可在大极距条件下实现高精度、大量程直线位移测量的变耦型时栅位移传感器。传感器通过在交变电磁场中改变励磁线圈和磁场拾取线圈的耦合状态建立以时间差反映位移变化的行波信号,实现精密位移测量。通过有限元分析软件对传感器进行了建模和仿真,根据仿真结果得到传感器仿真模型的测量误差,并对其进行了谐波分析;根据误差特点和变化规律对主要误差进行了溯源,并对模型进行了优化。根据优化模型制作了传感器实物,开展了验证实验。实验结果表明:根据仿真结果对传感器进行优化设计,在200 mm的测量范围内,传感器精度达到±500 nm,且系统成本低廉,极易制造。为时栅位移传感器在恶劣环境中的应用提供了解决方案和理论依据。  相似文献   

12.
采用0.3″的精密多齿分度台与平面反射镜组合,对转台分度误差进行检测。针对多齿分度台安装倾斜对检测结果产生影响的问题,提出了利用双轴光电自准直仪Y轴读数补偿调整误差的方法。根据转台分度误差是由多次谐波叠加的特点,采用谐波分析的方法对测量得到的离散数据进行拟合处理,得到用于转台分度误差补偿的连续曲线模型。对分度误差为17.82″的转台进行实测和误差补偿,补偿后转台的最大分度误差为2″。  相似文献   

13.
高精度时栅位移传感器研究   总被引:16,自引:1,他引:15  
分析了传统位移传感器的优点与不足,讨论了时空转换思想、时空坐标转换方法与时栅位移传感器原理。通过高精度时栅位移传感器的研制过程,介绍了单齿式、差频式、场式和混合式几种时栅的原理结构及其分别达到的分辨率和精度指标,最终通过鉴定的场式时栅达到了0.1″的分辨率和±0.8″的精度。还介绍了谐波修正法思想,目的在于把傅里叶变换用于传感器诞生之前的参数设计和制作过程中的误差修正,而不只是在其后的误差分解和分析。反映出时栅作为一种智能传感器所体现的技术优势和谐波修正法的实用效果,而最终目标是不依赖精密机械加工或不用刻线尺而实现精密位移测量。  相似文献   

14.
在不增大码盘尺寸的前提下,对测角传感器读数头的布局展开研究,以研制小型化高精度的测角传感器。本文基于测角误差的谐波分析结果,详细推导和分析了多读数头布局对角度测量误差的抑制原理。通过对几种典型多读数头布局方式进行深入研究,提出一种采用奇数头和偶数头相结合的读数头混合布局方式,以消除更多更高阶次误差,提高测角传感器的精度。实验结果表明,当采用三个、四个和六个读数头均匀布局形式时,测角传感器的测角精度分别为15.44″、9.72″和8.96″;当采用六个读数头优化布局的方式时,测角精度可达到7.7″。上述结果说明多读数头优化布局可有效抑制测角误差,提高测量精度。  相似文献   

15.
为了实现油液金属磨粒的高精度测量,基于微流体制备了一种可检测电阻-电感参数的磨粒传感器。通过仿真获得了金属颗粒在时谐磁场中的磁化和涡流效应特征,并通过实验研究了电阻-电感检测的电压特性和频率特性。高频激励可以增强金属颗粒内部的涡流效应,而激励电压对传感器检测结果的影响不大。研究表明电感参数对铁磁性金属的检测能力强,电阻参数对非铁磁性金属的检测能力强。采用2.0 V、2.0 MHz的激励,通过比较分析电阻和电感检测结果,该传感器可有效识别直径60μm的铜颗粒和直径16μm的铁颗粒。这种基于线圈电阻参数检测非铁磁性金属磨粒的方法为增强磨粒传感器的综合测量性能提供了新思路。  相似文献   

16.
线性度是传感器的重要性能指标之一。基于霍尔效应的霍尔角位置传感器的霍尔输出电压可表达为:UH=KHBIcosθ,霍尔输出电压与被测角度θ之间的关系是非线性的。针对角位移变化引入的非线性变量cosθ使得普通的磁场结构难以实现霍尔角位置传感器较大范围线性输出的问题,本文提出了一种改进的车用霍尔传感器磁场结构,通过对改进后的磁场结构用有限元仿真计算和实验测量均得出改进后的磁场结构能够实现霍尔角位移传感器的霍尔输出电压与被测角度之间呈线性变化。  相似文献   

17.
为了掌握磁弹索力传感器中磁场分布特点及其对传感器性能的影响,为磁弹索力传感器的设计提供参考,在讨论磁弹索力传感原理基础上,结合磁弹索力传感器结构原理分析磁弹索力传感器内部激励磁场及退磁场分布特点;在同样激励线圈的磁场条件下,通过改变感应线圈长度模拟内部磁场分布的均匀性变化情况,从而对传感器输出与应力关系进行对比性的仿真计算;并按照理论仿真思路,进行实验验证;实验结果表明:磁场均匀性从75%降低到25%时,传感器灵敏度从0.026 9 mV/MPa降低到0.021 9 mV/MPa,重复性误差从0.228%增加到0.734%,与理论仿真定性相符合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号