首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
生物界面柔性导电材料是新兴的、面向生物界面生理信号采集与反馈的电子电路的基本组成部分.由于人体组织本征上具有柔软特性,与之集成的电子电路也需要是柔性可形变的,以达到最基本的力学匹配.当电路变得柔软之后,在同样力的作用下则更容易产生形变,如何实现导电薄膜在大变形下依然保持导电特性变得尤为重要.本文简单介绍了柔性可拉伸导电材料制备过程中常用的弹性体,包括化学交联弹性体、物理交联弹性体,以及几种常见的导电材料如碳基导电材料、金属导电材料以及导电聚合物等,并总结分析了几种可拉伸导电薄膜的制备方法及在体表贴附式与体内植入式的应用,分析评价了现有方法并给出了未来可能的发展方向.  相似文献   

2.
聚合物离子凝胶是一种由离子液体(IL)和聚合物基质构成的新型凝胶体系,具有优异的可拉伸性、较高的电导率和较好的稳定性,在柔性电子产品领域具有广阔的应用空间,备受国内外研究者关注。通过调研整理近年来相关领域的研究进展,本文综述了聚合物离子凝胶材料的基质分类,讨论了导电水凝胶的改性方法,阐述了离子凝胶在相关领域的应用,并在此基础上总结展望了聚合物离子凝胶面临的挑战与未来的发展方向。指出开发具有优异力学性能、高电导率、可降解的离子凝胶是未来研究的重点。同时,提高离子凝胶的环境稳定性,降低离子凝胶的制备成本是实际应用中亟须解决的难题。离子凝胶的制备与应用研究将促进柔性电子材料的飞速发展。  相似文献   

3.
靳力  鞠苏  贺雍律  张雨林  陈晨  张鉴炜 《材料工程》1990,(收录汇总):89-101
聚合物离子凝胶是一种由离子液体(IL)和聚合物基质构成的新型凝胶体系,具有优异的可拉伸性、较高的电导率和较好的稳定性,在柔性电子产品领域具有广阔的应用空间,备受国内外研究者关注。通过调研整理近年来相关领域的研究进展,本文综述了聚合物离子凝胶材料的基质分类,讨论了导电水凝胶的改性方法,阐述了离子凝胶在相关领域的应用,并在此基础上总结展望了聚合物离子凝胶面临的挑战与未来的发展方向。指出开发具有优异力学性能、高电导率、可降解的离子凝胶是未来研究的重点。同时,提高离子凝胶的环境稳定性,降低离子凝胶的制备成本是实际应用中亟须解决的难题。离子凝胶的制备与应用研究将促进柔性电子材料的飞速发展。  相似文献   

4.
具有可逆形变的弹性气凝胶通常被称之为柔性气凝胶,这类材料具有优异的压缩回弹性、可弯折性、疏水性及溶剂中结构稳定性,克服了传统气凝胶力学性能差的缺点,近年来受到广泛关注。文中综述了氧化硅、碳质、陶瓷及生物质柔性气凝胶材料的最新研究进展,重点介绍了上述几类柔性气凝胶的制备方法、结构控制、性能特点及潜在应用,总结了实现气凝胶柔性的几种方法,并展望了柔性气凝胶材料的发展与应用前景。  相似文献   

5.
超疏水表面材料的制备与应用   总被引:2,自引:0,他引:2  
仿生超疏水表面材料具有特殊微纳米结构,因此表现出自清洁、防污染等一系列优异性能.在荷叶、水黾腿、蝴蝶翅膀等自然界中超疏水性组织和器官的启发下,仿生超疏水表面材料的设计和研发的目标不仅在于模仿生物的功能结构,更主要的是制备组分和结构均可调的超疏水表面,从而获得既有疏水自清洁性,同时强度、耐热、耐酸碱等性能又十分优异的新材料.该类材料在国防、工业、农业、医学和日常生活中均有广阔的应用前景.从超疏水材料纳米界面的结构出发,分析材料的疏水原理及其制备方法,介绍了近几年来该材料的研究进展以及在管道无损运输、房屋建筑和防水等应用领域的探索,展望了其未来的应用方向和前景.  相似文献   

6.
21世纪以来,随着激光技术的发展,可用激光法制备超疏水表面的材料越来越多。为满足在自清洁、抗污、油水分离等方面不同需求,用激光法制备超疏水表面时需要选择不同材料作为基底。金属材料硬度大,稳定性和耐用性好,以此为基底制造出的超疏水表面在自清洁,抗结冰,抗污等方面表现优异,此外也可用于制备其它超疏水表面的模板。无机非金属材料品种繁多,性能各异,所制备的超疏水表面应用各不相同,有些生物相容性优良,有些可用于油水分离或制造超级电容器。聚合物材料弹性好,密度小,耐摩擦,以此为基底制造出的超疏水材料可用于耐磨设备和微流体装置制造。介绍了激光制备超疏水表面的基本原理,重点论述了激光制备超疏水表面的常用基底:金属基底,无机非金属基底和聚合物基底。金属基底包括铝合金、不锈钢、铜,无机非金属基底包括石英晶体和石墨烯,聚合物基底包括聚二甲基硅氧化烷(PDMS)和聚四氟乙烯(PTFE)等。在归纳当前不同基底制造出的超疏水表面的性能及应用基础上,对未来激光制备超疏水材料的发展作了展望。  相似文献   

7.
近年来,人们受到自然界产生的超疏水现象的影响和启发,通过仿制生物表面结构制备出各种超疏水材料。超疏水材料因其表面独特的性质,在工业与军事领域得到了广泛应用。介绍了仿生超疏水材料表面的4种制备方法——模板法、溶胶-凝胶法、静电纺丝法和电沉积法,也涉及了其他制备方法,同时结合各种制备方法对仿生超疏水材料的最新研究成果进行了阐述。最后,总结了超疏水材料研究过程中存在的问题,并展望了其未来的发展方向。  相似文献   

8.
目的 使相关研究者快速了解纸基超疏水材料的制备方法和应用,并为开发新型纸基超疏水材料提供思路和参考。方法 对超疏水的理论模型进行概述,按照制备方法分类总结纸基超疏水材料的研究进展,对各类制备方法的优缺点进行评述。结果 制备纸基超疏水材料的方法主要有表面涂布法、静电纺丝技术、浸渍涂布法、表面化学改性法、层层组装法、相分离法、非溶剂蒸汽法、超临界溶液快速膨胀技术等,其中表面涂布法和浸渍涂布法具有成本低廉、操作简单、易于实现大规模生产等优点,应用最为广泛。结论 纸基超疏水材料的绿色制备及多功能纸基超疏水材料的开发是该领域未来发展的主要方向。  相似文献   

9.
柔性可穿戴电子器件的研制是未来科技发展的方向之一,柔性导电材料是可穿戴电子器件的重要支撑材料。由于聚合物具有优异的柔性,由聚合物基导电复合材料制备柔性导体是一种重要的途径和方式。文中从制备和表征方法方面归纳了聚合物基柔性导电复合材料的研究进展,重点阐述了实现柔性导体的关键因素,即聚合物优异高弹性的保持和可拉伸的稳定的导电网络的实现,详细介绍了简易地利用高弹性基体和纳米填料的直接共混法和目前应用较多的结构可拉伸导体的设计与制备,并总结了目前研究中存在的问题。  相似文献   

10.
随着可穿戴电子设备的迅速实现例如植入式设备、可拉伸传感器和医疗设备,可拉伸电源已在世界各地引起注意,作为这一新兴领域的一个关键组成部分,可拉伸电池与普通的电池不同,可拉伸电池具有更强的抗变形能力,在充放电过程中通过氧化还原反应储存电能,是一个具有吸引力的候选电池。最近这些年,人们广泛致力于可拉伸电池新材料的开发和设计创新结构,通过对近期相关文献的讨论,综述了可拉伸电池的研究与发展现状,重点介绍了先进的可拉伸材料及其设计策略,首先,详细概述可拉伸电池元件的材料方面,重点介绍了电极材料包括碳基材料、杂化纳米复合材料、导电聚合物,同时介绍各种结构工程赋予电池延展性,最后介绍了水凝胶聚合物电解质。分析总结了可拉伸电池未来发展中仍需面临的一些挑战,指出了可拉伸电池的研究重点在于提高能量密度和安全性,期望能够激发更多的研究创造以推动可拉伸电池的实际应用。  相似文献   

11.
With the rapid development of stretchable electronics, functional textiles, and flexible sensors, water‐proof protection materials are required to be built on various highly flexible substrates. However, maintaining the antiwetting of superhydrophobic surface under stretching is still a big challenge since the hierarchical structures at hybridized micro‐nanoscales are easily damaged following large deformation of the substrates. This study reports a highly stretchable and mechanically stable superhydrophobic surface prepared by a facile spray coating of carbon black/polybutadiene elastomeric composite on a rubber substrate followed by thermal curing. The resulting composite coating can maintain its superhydrophobic property (water contact angle ≈170° and sliding angle <4°) at an extremely large stretching strain of up to 1000% and can withstand 1000 stretching–releasing cycles without losing its superhydrophobic property. Furthermore, the experimental observation and modeling analysis reveal that the stable superhydrophobic properties of the composite coating are attributed to the unique self‐adaptive deformation ability of 3D hierarchical roughness of the composite coating, which delays the Cassie–Wenzel transition of surface wetting. In addition, it is first observed that the damaged coating can automatically recover its superhydrophobicity via a simple stretching treatment without incorporating additional hydrophobic materials.  相似文献   

12.
本文综述了金属基超疏水材料的研究进展,重点讨论了金属基超疏水表面的主要制备方法,比较了不同制备方法的优缺点。同时,探讨了金属基超疏水表面的各种功能特性,并分析了金属基超疏水表面目前在制备和应用中存在的主要问题。指出金属基超疏水表面未来的重点发展方向是简化制备工艺、降低成本、提高超疏水表面的耐久性和稳定性以及制备具有自修复性能的金属超疏水表面。  相似文献   

13.
14.
Flexible strain sensors can detect physical signals (e.g., temperature, humidity, and flow) by sensing electrical deviation under dynamic deformation, and they have been used in diverse fields such as human motion detection, medical care, speech recognition, and robotics. Existing sensing materials have relatively low adaptability and durability and are not stretchable and flexible enough for complex tasks in motion detection. In this work, a highly flexible self‐healing conductive polymer composite consisting of graphene, poly(acrylic acid) and amorphous calcium carbonate is prepared via a biomineralization‐inspired process. The polymer composite shows good editability and processability and can be fabricated into stretchable strain sensors of various structures (sandwich structures, fibrous structures, self‐supporting structures, etc.). The developed sensors can be attached on different types of surfaces (e.g., flat, cambered) and work well both in air and under water in detecting various biosignals, including crawling, undulatory locomotion, and human body motion.  相似文献   

15.
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy‐harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed.  相似文献   

16.
柔性电致变色器件研究进展   总被引:1,自引:0,他引:1  
电致变色材料是一类重要的光电功能材料,可以随周期性调整的电压改变颜色.这种可控的光学吸收率和透过率的调制在智能窗户、电致变色显示和防眩光后视镜等应用场合大显身手.近年来电致变色技术发展迅速,但当前的研究大多集中在传统刚性电致变色器件,通常以氧化铟锡(ITO)等导电玻璃为基底.这些刚性变色器件存在厚度大、共型性差、机械强...  相似文献   

17.
With the miniaturization of personal wearable electronics, considerable effort has been expended to develop high-performance flexible/stretchable energy storage devices for powering integrated active devices. Supercapacitors can fulfill this role owing to their simple structures, high power density, and cyclic stability. Moreover, a high electrochemical performance can be achieved with flexible/stretchable supercapacitors, whose applications can be expanded through the introduction of additional novel functionalities. Here, recent advances in and future prospects for flexible/stretchable supercapacitors with innate functionalities are covered, including biodegradability, self-healing, shape memory, energy harvesting, and electrochromic and temperature tolerance, which can contribute to reducing e-waste, ensuring device integrity and performance, enabling device self-charging following exposure to surrounding stimuli, displaying the charge status, and maintaining the performance under a wide range of temperatures. Finally, the challenges and perspectives of high-performance all-in-one wearable systems with integrated functional supercapacitors for future practical application are discussed.  相似文献   

18.
Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non‐stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field‐effect transistors (FETs), photodetectors, light‐emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号