首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
序列推荐系统可以根据用户和物品交互的时间序列信息,精确预测用户下一次交互物品.现有的序列推荐算法存在用户兴趣过渡拟合的问题,导致推荐内容同质化严重,从而无法实现个性化推荐.基于此,本文提出一种融合知识图谱与注意力机制的个性化序列推荐算法(SR-KGA):首先,引入知识图谱,通过图卷积网络对物品进行嵌入表示;其次,通过自注意力机制和多头注意力机制构建序列到序列(seq2seq)模型,最后,在损失函数中加入多样性正则项;实现用交互序列来预测未来可能交互的物品序列,从而进行推荐.通过在真实的数据集上实验,SR-KGA在保证推荐准确度的同时,提升了推荐列表的多样性,实现了用户个性化推荐.  相似文献   

2.
将知识图谱引入推荐系统,能一定程度解决数据稀疏和冷启动问题,但是往往忽略了高阶协同信息和不同协同信息的重要程度对探索用户潜在偏好的重要性,由此提出了一种融合增强协同信息和知识图谱信息的推荐模型(CIKG)。该模型首先利用用户和项目的历史交互数据,获取一阶协同信息和高阶协同信息,同时使用注意力机制捕获重要信息,得到增强协同信息,用来补充用户和项目的特征表示。其次通过将用户交互的项目与知识图谱中的实体对应,在知识图谱中执行传播操作,得到知识图谱信息,用于挖掘用户的偏好并且增强模型的可解释性。最后通过聚合器将增强协同信息和知识图谱信息结合得到用户和项目的最终表示,从而进行预测。在Last-fm和Book-crossing两个数据集上进行的实验结果表明CIKG相比其他对比的模型推荐效果有较大提升。  相似文献   

3.
知识图谱(KG)具有丰富的结构化信息,能有效缓解推荐模型的稀疏性和冷启动问题,提升推荐系统的准确性与可解释性。近年来,融合知识图谱的端到端推荐模型成为技术趋势。提出了一种融合相似用户影响效应的知识图谱推荐模型,该模型在有效利用知识图谱的前提下,扩充了用户与项目之间的交互方式。首先,利用图神经网络邻域聚合策略与注意力机制,分别捕获用户与项目在知识图谱上的2种高阶表示;其次,根据相似用户的影响效应,设计影响力增强层,捕获相似用户影响效应的潜在表示;最后,将上述3种表示共同反馈到多层感知机中,输出预测分值。在真实数据集上的实验结果验证了所提模型的有效性和效率。  相似文献   

4.
随着信息的海量增长,推荐系统成为我们日常生活中一种重要的应用。传统的推荐系统根据用户和物品的交互行为进行推荐并利用用户对物品的评分来体现用户的喜好,但是数据的稀疏性会影响推荐结果的准确度,并且简单地评分数字也难以体现用户偏好的主观性以及用户选择的可解释性。因此,该文提出了一种融合标签和知识图谱的推荐方法,其中标签是一种文本信息,其包含的丰富内容和潜在的语义信息可以体现用户对物品的主观评价,对推荐起着关键作用。而知识图谱作为一种有效的推荐辅助技术,其包含的大量实体能为物品提供更多有效的特征信息。此外,该文还提出了一种融合注意力和自注意力的混合注意力模型,通过标签和实体为物品特征分配混合注意力权重,从而提高了推荐性能。实验结果表明,在MovieLens和Last.FM数据集上,该模型的推荐性能较其他推荐算法有所提升。  相似文献   

5.
信息爆炸使得信息的利用率反而降低,信息推荐技术是解决这个问题的重要技术手段,然而推荐系统中普遍存在稀疏性和冷启动.针对这些问题,提出了基于知识图谱和信息融合的推荐算法,其中包括商品知识图谱的构建和用户偏好的信息融合.实验结果表明:改进算法的效果得到了进一步的提升.  相似文献   

6.
基于知识图谱的主流推荐模型在融合高阶信息时较少考虑源节点与目标节点之间的关系,在复杂网络场景中易引入过多噪声信息进而影响推荐性能。针对此问题提出一种融合元图邻域的知识图谱推荐模型,通过构建并融合元图邻域降低噪声信息的影响,提升推荐性能。首先,基于元图相似度生成源节点的初始相似序列,利用自注意力网络与线性网络对初始序列进行特征增强,以增强后的特征向量组成的集合构造节点的元图邻域。其次,基于用户对各个元图的不同偏好程度设计注意力机制,对所得元图邻域进行卷积聚合,将元图邻域融入源节点,增强源节点的特征表示。最后,以增强后的向量与用户向量的内积作为用户与项目交互的概率,并以此完成推荐。在MovieLens-20M与Last-FM数据集上进行实验,AUC与F1值分别为97.3%和83.1%、94.3%和75.6%,recall@50分别为35.4%与31.7%,其表现优于NGCF、KGCN、LKGR等模型。结果表明,融合元图邻域的知识图谱推荐模型可以有效提升推荐的性能。  相似文献   

7.
在推荐时引入知识图谱中的实体及关系信息是有效缓解冷启动问题的方法. HAN模型首次将基于注意力机制的图神经网络用于异构图, 但是并没有充分利用节点的高阶邻居信息. 为了解决该问题, 提出了一种融合协同知识图谱高阶邻居特征的推荐模型CKG-HAN. 该模型用元路径来连接项目节点, 将协同知识图谱分成多个子图, 模型的节点注意力层用于聚合子图中每个节点的高阶邻居特征, 关系注意力层给不同元路径下的节点特征分配不同的权重, 最终得到充分融合语义信息的节点嵌入表示. 在MovieLens-1M数据集上进行了Top-K推荐, 结果表明本文提出的模型能够有效提高推荐结果的准确性.  相似文献   

8.
推荐系统可以在海量的数据信息中获取用户偏好,从而更好地实现个性化推荐,提高用户体检,以及解决互联网中的信息过载问题,但推荐系统仍然存在冷启动和数据稀疏问题。知识图谱作为一种拥有大量实体和丰富语义关系的结构化知识库,不但能够提高推荐系统的准确性,还能够为推荐项目提供可解释性,从而增强用户对推荐系统的信任度,为解决推荐系统中存在的一系列关键问题提供了新方法、新思路。首先针对知识图谱推荐系统进行研究与分析,以应用领域为分类依据将知识图谱推荐系统分为多领域知识图谱推荐系统和特定领域知识图谱推荐系统,同时根据这些知识图谱推荐方法的特点进一步分类,对每类方法进行定量分析和定性分析;之后列举出知识图谱推荐系统在应用领域中常用的数据集,对数据集的规模和特点进行概述;最后对知识图谱推荐系统未来的研究方向进行展望和总结。  相似文献   

9.
知识图谱蕴含丰富的语义信息,广泛应用在不同的推荐场景中。现有的基于知识图谱的推荐方法在图神经网络的建模过程中,粗粒度地考虑用户和项目交互的关系,构建用户特征模型时,忽略不同历史项目的重要性。针对此类问题,提出一种融合知识图谱与注意力机制的项目推荐算法。该算法聚合用户特征,使用注意力机制学习知识图谱高阶潜在关系,构建项目特征时传播其邻域之间的项目嵌入表示,用图卷积网络进行特征聚合,最后使用多层神经网络进行预测。该算法在两组公开数据集上,与基线算法进行对比实验,召回率最高提升6.9%。  相似文献   

10.
知识图谱可有效缓解传统协同过滤中的数据稀疏和冷启动问题,因此,近年来在推荐系统中融入知识图谱的方法成为重要的探索方向。然而现有的方法大多将知识图谱的网络结构划分为单独路径或仅利用了一阶邻居信息,造成无法建立整个图上的高阶连通性问题。为解决该问题,提出融合知识图谱和图注意力网络的KG-BGAT模型,并设计了双线性采集器。双线性采集器能够在信息采集阶段获取节点间的特征交互信息,丰富节点表示;图注意力网络通过递归嵌入传播算法将各个节点表示沿图进行传播,能够捕获图中的高阶连通性。在MovieLens-1M数据集上进行了Top-K推荐实验,在推荐列表长度为20时,精确率、召回率和归一化折损累计增益分别为29.4%、24.9%、67.4%,超过了目前主流的CKE、RippleNet、KGCN等融合知识图谱的推荐算法。实验证明提出的方法能够有效提高推荐结果的准确性。  相似文献   

11.
知识图谱引入推荐系统可以利用知识图谱实体之间的语义关系学习用户及项目表示。基于嵌入传播的方法利用知识图谱的图结构学习相关特征,但随着传播范围增加,多跳实体间的语义相关性减小。为有效提升推荐语义表达能力并提高推荐准确度,提出基于用户潜在兴趣的知识感知传播推荐模型,该模型采用异构传播方式传播项目关联知识并迭代学习用户的潜在兴趣,以此增强模型对用户与项目的表示能力。具体地,首先图嵌入层生成用户与项目的初始化表示,随后在异构传播层中采用知识感知注意力机制区分同一层中实体之间的重要性,更精确生成目标实体的表示。随后通过用户潜在兴趣传播学习用户的高阶潜在兴趣,增强多跳实体语义相关性。最后在预测层中使用信息衰减因子区分不同传播层次的重要性,生成用户及项目的最终表示。实验表明,该模型在Last. FM与Book-Crossing两个公开数据集上AUC值相较于最先进的基线提升了2.25%与4.71%,F1值分别提升3.05%和1.20%,recall@K值均优于对比的基线模型,提出的模型能有效提高推荐准确度。  相似文献   

12.
为解决传统人岗推荐系统存在的三个常见问题,即数据稀疏性、数据冷启动和数据利用率低,提出了基于知识图谱的人岗推荐系统构建方法。该方法通过改进传统推荐模型,将知识图谱作为辅助边信息融合到推荐系统中进行人岗推荐,有效解决了数据稀疏性和数据冷启动问题;引入知识图谱补全算法提高了数据利用率。提出的方法在人岗推荐上准确率可达92%,比现有人岗推荐方法准确率提高约1%。实验结果表明该方法是可行的,知识图谱的加入可以提升人岗推荐系统的推荐效果。  相似文献   

13.
为了解决推荐系统的冷启动和稀疏性问题, 本文提出了一种基于异质信息网络的推荐模型. 传统的推荐方法无法在知识图谱表示学习中融入隐含的路径信息, 这样使得知识推荐系统性能较为一般. 本文提出的模型在异质信息网络中设置元路径, 通过图神经网络融入到知识图谱表示学习中. 再利用注意力网络连接推荐任务和知识图谱表示任务, 其可以学习两个任务之中潜在的特征, 并且能够增强推荐系统中被推荐项和知识图谱中实体的相互作用. 最后在推荐任务中进行用户点击率预测. 模型在公开数据集Book-Crossing和通过DBLP数据集构建的图谱上进行了实验. 最后结果表明, 模型在AUC, 召回率和F1值3个指标上均比其他算法有更好的表现.  相似文献   

14.
针对当前电网运行海量数据未充分挖掘有效信息,且调度信息多源异构、非结构化的特征,电力调度无法及时得到有效故障信息,致使发生电力调度在抢修工作中调度处置效率降低,故障信息传递不及时、不准确等情况。本文提出基于注意力机制BiLSTM-CRF模型的电网故障处置知识图谱构建技术,依托构建的电网故障处置知识图谱,高效筛选电网故障有效信息,形成智能故障辅助决策应用,切实提高电网故障抢修效率。  相似文献   

15.
现有的大多数利用知识图谱的推荐算法在探索用户的潜在偏好时没有有效解决知识图谱中存在的不相关实体的问题,导致推荐结果准确率不高。针对这一问题,提出了基于知识图谱和图注意网络的推荐算法KG-GAT(knowledge graph and graph attention network)。该算法将知识图谱作为辅助信息,在图注意网络中使用分层注意力机制嵌入与实体相关的近邻实体的信息来重新定义实体的嵌入,得到更有效的用户和项目的潜在表示,生成更精确的top-N推荐列表,并带来了可解释性。最后利用两个公开数据集将所提算法和其他算法进行实验对比,得出所提算法KG-GAT能够有效解决沿着知识图谱中的关系探索用户的潜在偏好时存在的不相关实体的问题。  相似文献   

16.
知识图谱在推荐系统中的应用越来越受重视,可以有效地解决推荐系统中存在的数据稀疏性和冷启动问题.但现有的基于路径和基于嵌入的知识感知推荐算法在合并知识图谱中的实体来表示用户时,并没有考虑到实体对于用户的重要性并不相同,推荐结果会受到无关实体的影响.针对现有方法的局限性,提出了一种新的结合注意力机制的知识感知推荐算法,并给...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号