首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
White Blood Cell (WBC) cancer or leukemia is one of the serious cancers that threaten the existence of human beings. In spite of its prevalence and serious consequences, it is mostly diagnosed through manual practices. The risks of inappropriate, sub-standard and wrong or biased diagnosis are high in manual methods. So, there is a need exists for automatic diagnosis and classification method that can replace the manual process. Leukemia is mainly classified into acute and chronic types. The current research work proposed a computer-based application to classify the disease. In the feature extraction stage, we use excellent physical properties to improve the diagnostic system's accuracy, based on Enhanced Color Co-Occurrence Matrix. The study is aimed at identification and classification of chronic lymphocytic leukemia using microscopic images of WBCs based on Enhanced Virtual Neural Network (EVNN) classification. The proposed method achieved optimum accuracy in detection and classification of leukemia from WBC images. Thus, the study results establish the superiority of the proposed method in automated diagnosis of leukemia. The values achieved by the proposed method in terms of sensitivity, specificity, accuracy, and error rate were 97.8%, 89.9%, 76.6%, and 2.2%, respectively. Furthermore, the system could predict the disease in prior through images, and the probabilities of disease detection are also highly optimistic.  相似文献   

2.
Applications of internet-of-things (IoT) are increasingly being used in many facets of our daily life, which results in an enormous volume of data. Cloud computing and fog computing, two of the most common technologies used in IoT applications, have led to major security concerns. Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient. Several artificial intelligence (AI) based security solutions, such as intrusion detection systems (IDS), have been proposed in recent years. Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require the use of feature selection (FS) techniques to increase classification accuracy by minimizing the number of features selected. On the other hand, metaheuristic optimization algorithms have been widely used in feature selection in recent decades. In this paper, we proposed a hybrid optimization algorithm for feature selection in IDS. The proposed algorithm is based on grey wolf (GW), and dipper throated optimization (DTO) algorithms and is referred to as GWDTO. The proposed algorithm has a better balance between the exploration and exploitation steps of the optimization process and thus could achieve better performance. On the employed IoT-IDS dataset, the performance of the proposed GWDTO algorithm was assessed using a set of evaluation metrics and compared to other optimization approaches in the literature to validate its superiority. In addition, a statistical analysis is performed to assess the stability and effectiveness of the proposed approach. Experimental results confirmed the superiority of the proposed approach in boosting the classification accuracy of the intrusion in IoT-based networks.  相似文献   

3.
葛丁飞  徐爱群 《计量学报》2014,35(3):252-257
利用基于联合能量百分比搜索的二维主元分析法对12导高分辨率心电信号(ECG)进行全局特征提取和分类检测研究。所用数据取自PTB诊断数据库,包括健康状态ECG,早期心肌梗死(MI)ECG,急性期MI ECG,恢复期 MI ECG。结果表明,所用的方法能有效地融合12导ECG信号及其高频分量中的细微结构信息,与常规主元分析法相比,其平均分类检测精度可提高10.43%,与常规二维主元分析法相比,能得到维数更低的特征表示,并可获得99.46 %的平均分类检测精度。  相似文献   

4.
Biometric recognition refers to the identification of individuals through their unique behavioral features (e.g., fingerprint, face, and iris). We need distinguishing characteristics to identify people, such as fingerprints, which are world-renowned as the most reliable method to identify people. The recognition of fingerprints has become a standard procedure in forensics, and different techniques are available for this purpose. Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models. Therefore, we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones. In order to improve fingerprint classification accuracy, our proposed method used the most effective texture features and classifiers. Discriminant Analysis (DCA) and Gaussian Discriminant Analysis (GDA) are employed as classifiers, along with Histogram of Oriented Gradient (HOG) and Segmentation-based Feature Texture Analysis (SFTA) feature vectors as inputs. The performance of the classifiers is determined by assessing a range of feature sets, and the most accurate results are obtained. The proposed method is tested using a Sokoto Coventry Fingerprint Dataset (SOCOFing). The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times. Three distinct degrees of obliteration, central rotation, and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints. The proposal achieved massive success with a classification accuracy reaching 99%. The experimental results indicate that the proposed method for fingerprint classification is feasible and effective. The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.  相似文献   

5.
多数现有的计算机辅助心电(ECG)诊断技术研究通常是基于常规心电导联展开的,而正交Frank心电导联比常规心电导联有着与解剖学更为密切的联系.基于Frank导联的心肌梗死(MI)心电特征提取和分类检测的研究,对MI ECG信号进行Hermite非线性展开,以Hermite系数为心电特征,并对其进行分类测试.与常规心电导联相比,此方法对早期MI和急性期MI进行分类,检测精度可分别提高30.06%和19.33%.  相似文献   

6.
The classification of protein structures is essential for their function determination in bioinformatics. At present, a reasonably high rate of prediction accuracy has been achieved in classifying proteins into four classes in the SCOP database according to their primary amino acid sequences. However, for further classification into fine-grained folding categories, especially when the number of possible folding patterns as those defined in the SCOP database is large, it is still quite a challenge. In our previous work, we have proposed a two-level classification strategy called hierarchical learning architecture (HLA) using neural networks and two indirect coding features to differentiate proteins according to their classes and folding patterns, which achieved an accuracy rate of 65.5%. In this paper, we use a combinatorial fusion technique to facilitate feature selection and combination for improving predictive accuracy in protein structure classification. When applying various criteria in combinatorial fusion to the protein fold prediction approach using neural networks with HLA and the radial basis function network (RBFN), the resulting classification has an overall prediction accuracy rate of 87% for four classes and 69.6% for 27 folding categories. These rates are significantly higher than the accuracy rate of 56.5% previously obtained by Ding and Dubchak. Our results demonstrate that data fusion is a viable method for feature selection and combination in the prediction and classification of protein structure.  相似文献   

7.
In this era of electronic health, healthcare data is very important because it contains information about human survival. In addition, the Internet of Things (IoT) revolution has redefined modern healthcare systems and management by providing continuous monitoring. In this case, the data related to the heart is more important and requires proper analysis. For the analysis of heart data, Electrocardiogram (ECG) is used. In this work, machine learning techniques, such as adaptive boosting (AdaBoost) is used for detecting normal sinus rhythm, atrial fibrillation (AF), and noise in ECG signals to improve the classification accuracy. The proposed model uses ECG signals as input and provides results in the form of the presence or absence of disease AF, and classifies other signals as normal, other, or noise. This article derives different features from the signal using Maximal Information Coefficient (MIC) and minimum Redundancy Maximum Relevance (mRMR) technique, and then classifies them based on their attributes. Since the ECG contains some kind of noise and irregular data streams so the purpose of this study is to remove artifacts from the ECG signal by deploying the method of Second-Order-Section (SOS) (filter) and correctly classify them. Several features were extracted to improve the detection of ECG data. Compared with existing methods, this work gives promising results and can help improve the classification accuracy of the ECG signals.  相似文献   

8.
针对磁记忆检测信号弱、缺陷区域无法有效识别的问题,提出了一种改进的模糊支持向量机(FSVM),并将其应用于磁记忆检测缺陷的识别。改进的FSVM一方面在传统确定模糊隶属度函数方法的基础上,通过构造k近邻离散度,减弱孤立点或噪声样本对分类的影响;另一方面通过对样本特征值进行加权处理,消弱冗余特征或弱特征对识别的影响。将改进FSVM应用于磁记忆检测缺陷识别。实验结果表明:该方法可以有效识别不同危险区域的缺陷信号,具有较好的鲁棒性和分类能力,是一种有效的磁记忆检测缺陷识别方法。  相似文献   

9.
The uncertainty in human brain leads to the formation of epilepsy disease in human. The automatic detection and severity analysis of epilepsy disease is proposed in this article using a hybrid classification algorithm. The proposed method consists of decomposition stage, feature extraction, and classification stages. The electroencephalogram (EEG) signals are decomposed using dual-tree complex wavelet transform and then features are extracted from these coefficients. These features are then classified using the neural network classification approach in order to classify the EEG signals into either focal or nonfocal EEG signals. Furthermore, severity of the focal EEG signal is analyzed using an adaptive neuro-fuzzy inference system classification approach. The proposed hybrid classification method for the classification of focal signals and nonfocal signals achieved 98.6% of sensitivity, 99.1% of specificity, and 99.4% of accuracy. The average detection rate for both focal and nonfocal dataset is about 98.5%.  相似文献   

10.
Cerebral Microbleeds (CMBs) are microhemorrhages caused by certain abnormalities of brain vessels. CMBs can be found in people with Traumatic Brain Injury (TBI), Alzheimer’s disease, and in old individuals having a brain injury. Current research reveals that CMBs can be highly dangerous for individuals having dementia and stroke. The CMBs seriously impact individuals’ life which makes it crucial to recognize the CMBs in its initial phase to stop deterioration and to assist individuals to have a normal life. The existing work report good results but often ignores false-positive’s perspective for this research area. In this paper, an efficient approach is presented to detect CMBs from the Susceptibility Weighted Images (SWI). The proposed framework consists of four main phases (i) making clusters of brain Magnetic Resonance Imaging (MRI) using k-mean classifier (ii) reduce false positives for better classification results (iii) discriminative feature extraction specific to CMBs (iv) classification using a five layers convolutional neural network (CNN). The proposed method is evaluated on a public dataset available for 20 subjects. The proposed system shows an accuracy of 98.9% and a 1.1% false-positive rate value. The results show the superiority of the proposed work as compared to existing states of the art methods.  相似文献   

11.
尚丽  周燕  孙战里 《计量学报》2021,42(11):1430-1435
与稀疏表示(SR)模型相比,基于单个核函数的SR(KSR)模型可以有效减少数据维数、降低学习模型的计算复杂度并提高特征分类精度;但这种模型对核函数及其参数的选择通常不能包含恰当的、完整的分类信息。为了满足更高的特征分类精度需求,提出了一种基于多个核函数的SR(M-KSR)模型及其快速稀疏优化方法,并将其应用于掌纹图像的分类。测试结果证明了基于M-KSR模型的掌纹分类方法的有效性和实用性。  相似文献   

12.
付荣荣  李朋  刘冲  张扬 《计量学报》2022,43(5):688-695
脑电信号的识别与分类是脑机接口技术的热点研究问题,单一分类器不能很好利用特征以及分类器的适应性,导致识别的准确率很难进一步提高,基于线性判别分析的分类决策级融合策略,可用于提高脑-机接口系统的分类准确率。首先,通过分离出两种分类器的假性试验特征,从这两种方法中选择更有可能正确决策提高分类准确性;其次为了测量每个决策的不确定性,使用与所对应分类器的最大和第二大相关系数提取特征向量。基于这一思想,提出了一种新的决策选择器,该方法通过整合两种基于线性判别分析的算法选择更有可能是准确的决策,从而达到提高脑电信号分类准确度。实验结果表明,该方法通过与精度相近的算法相结合在运动想象数据分类上获得了较好的分类准确率。  相似文献   

13.
Most children and elderly people worldwide die from pneumonia, which is a contagious illness that causes lung ulcers. For diagnosing pneumonia from chest X-ray images, many deep learning models have been put forth. The goal of this research is to develop an effective and strong approach for detecting and categorizing pneumonia cases. By varying the deep learning approach, three pre-trained models, GoogLeNet, ResNet18, and DenseNet121, are employed in this research to extract the main features of pneumonia and normal cases. In addition, the binary dipper throated optimization (DTO) algorithm is utilized to select the most significant features, which are then fed to the K-nearest neighbor (KNN) classifier for getting the final classification decision. To guarantee the best performance of KNN, its main parameter (K) is optimized using the continuous DTO algorithm. To test the proposed approach, six evaluation metrics were employed namely, positive and negative predictive values, accuracy, specificity, sensitivity, and F1-score. Moreover, the proposed approach is compared with other traditional approaches, and the findings confirmed the superiority of the proposed approach in terms of all the evaluation metrics. The minimum accuracy achieved by the proposed approach is (98.5%), and the maximum accuracy is (99.8%) when different test cases are included in the evaluation experiments.  相似文献   

14.
倪俊帅  赵梅  胡长青 《声学技术》2020,39(3):366-371
为了改善分类系统的性能,进一步提高舰船辐射噪声分类的正确率,该文提出了一种基于深度神经网络的多特征融合分类方法。该方法首先提取舰船辐射噪声几种不同的特征,将提取的特征同时用于训练具有多个输入分支的深度神经网络,使网络直接在多种特征参数上进行联合学习,通过神经网络的输入分支和连接层实现特征融合,再对舰船辐射噪声进行分类。为了特征深度学习提取了舰船辐射噪声的频谱特征、梅尔倒谱系数和功率谱特征,并将多特征融合分类方法与在一种特征上进行深度学习分类方法的正确率进行对比。实验结果表明,基于深度学习的多特征融合分类方法可以有效地提高舰船辐射噪声分类的正确率,是一种可行的分类方法。  相似文献   

15.
手势作为人机交互的重要方式,因灵活性与便捷性强,已成为控制领域的研究重点。针对上肢康复机器人手势识别技术存在的不足,结合特征组合与滑动窗口法,提出一种基于人工鱼群算法(artificial fish swarm algorithm,AFSA)优化的极限学习机(extreme learning machine,ELM)的多手势精准识别方法,以提高手势识别的准确率。首先,运用表面肌电测量系统采集人体常用的8种手势对应的表面肌电信号(surface electromyography,SEMG),作为后续分类模型的信号源,并运用去噪技术与起止点检测技术对SEMG进行预处理;然后,选取通过主成分分析(principal components analysis,PCA)降维处理后的最优特征组合与最优滑动窗口;接着,采用AFSA搜寻ELM的最优输入权值和隐含阈值,以提高其分类准确率;最后,对AFSA优化的ELM(AFSA-ELM)分类模型、反向传播(back propagation,BP)神经网络分类模型和未优化的ELM分类模型进行比较,以验证所提出方法的精准性。实验结果表明,结合最优特征组合与最优滑动窗口设计的AFSA-ELM分类模型对多种手势的平均识别准确率高达97.4%,比BP神经网络分类模型和未优化的ELM分类模型分别高3.5%和1.6%,验证了所提出方法的识别精准性。研究结果可为手势识别提供新思路,进而为人体上肢动作的深度分析和上肢康复机器人手势识别算法的优化提供理论基础和参考。  相似文献   

16.
With new developments experienced in Internet of Things (IoT), wearable, and sensing technology, the value of healthcare services has enhanced. This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare. Bio-medical Electrocardiogram (ECG) signals are generally utilized in examination and diagnosis of Cardiovascular Diseases (CVDs) since it is quick and non-invasive in nature. Due to increasing number of patients in recent years, the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients. In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals. The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECG Signal Classification (IBADL-BECGC) approach. To accomplish this, the proposed IBADL-BECGC model initially pre-processes the input signals. Besides, IBADL-BECGC model applies NasNet model to derive the features from test ECG signals. In addition, Improved Bat Algorithm (IBA) is employed to optimally fine-tune the hyperparameters related to NasNet approach. Finally, Extreme Learning Machine (ELM) classification algorithm is executed to perform ECG classification method. The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset. The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.  相似文献   

17.
水声目标识别是被动声呐系统的主要应用之一。为了进一步提升小样本条件下水下目标的识别率,文章提出一种基于多尺度卷积和双端注意力机制相融合的方法。首先,提取梅尔倒谱系数,色度谱和计算谱对比度等特征,建立基于多类别特征子集的三维聚合特征。其次,采用多尺度卷积滤波器算子构造多分辨率卷积神经网络,以更好地适应三维聚合特征的时频结构。另外,采用双端注意力模型捕获样本的全局依赖和局部特性。采用基于指数加权的对数交叉熵函数作为损失函数,提升样本数较少类别的识别率。实验结果表明,该方法在ShipsEar数据上的平均识别率为95.5%,取得了较好的分类效果。  相似文献   

18.
Abstract

In this paper, a novel grey‐based feature ranking method for feature subset selection is proposed. The classification effectiveness of each attribute of a specific classification problem is proposed and then each attribute can be ranked. Features with higher classification effectiveness are more important and relevant and thus considered as the final feature subset for pattern classification. Experiments performed on various application domains are reported to demonstrate the performance of the proposed approach. The proposed approach yields better performance than other existing feature subset selection methods and is helpful for improving the classification accuracy in pattern classification.  相似文献   

19.
Magnetic resonance image (MRI) segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumor detection techniques are presented in the literature. In this article, we have developed an approach to brain tumor detection and severity analysis is done using the various measures. The proposed approach comprises of preprocessing, segmentation, feature extraction, and classification. In preprocessing steps, we need to perform skull stripping and then, anisotropic filtering is applied to make image suitable for extracting features. In feature extraction, we have modified the multi‐texton histogram (MTH) technique to improve the feature extraction. In the classification stage, the hybrid kernel is designed and applied to training of support vector machine to perform automatic detection of tumor region in MRI images. For comparison analysis, our proposed approach is compared with the existing works using K‐cross fold validation method. From the results, we can conclude that the modified multi‐texton histogram with non‐linear kernels has shown the accuracy of 86% but the MTH with non‐linear kernels shows the accuracy of 83.8%.  相似文献   

20.
ABSTRACT

To detect oral tongue squamous cell carcinoma (OTSCC) using fibre optic Raman spectroscopy, we present a classification model based on convolutional neural networks (CNN) and support vector machines (SVM). 24 samples Raman spectra of OTSCC and para-carcinoma tissues from 12 patients were collected and analysed. In our proposed model, CNN is used as a feature extractor for forming a representative vector. Then the derived features are fed into an SVM classifier, which is used for OTSCC classification. Experimental results demonstrated that the area under the receiver operating characteristic curve was 99.96% and the classification error was zero (sensitivity: 99.54%, specificity: 99.54%). To show the superiority of this model, comparison results with the state-of-the-art methods showed it can obtain a competitive accuracy. These findings may pay a way to apply the proposed model in the fibre optic Raman instruments for intra-operative evaluation of OTSCC resection margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号