共查询到20条相似文献,搜索用时 187 毫秒
1.
基于麦克风阵列的声源定位技术,可以应用在机械设备故障诊断、鸣笛抓拍等领域。本文设计了一个使用三个数字麦克风组成阵列进行声源定位系统。该系统利用三个麦克风的时域信息,采用广义互相关算法对达到时间延迟进行计算。通过阵元几何关系并利用阵元信号的时延,获得了在室内环境下较好的声源定位效果。经测试该系统最大误差为4.68%有较好的结果,同时该方案还可以帮助工人快速发现并排除车间生产线机械设备故障,从而提高生产效率。 相似文献
2.
正四面体麦克风阵列声源定位模型研究 总被引:1,自引:0,他引:1
研究声源定位优化建模问题,针对声源位于远场环境下无法获取精确的方位角和俯仰角,由于采用声达时间差(TDOA)和空间几何算法的正四面体麦克风阵列声源定位方法只适应于近场声源定位,为了提高定位准确性,提出了应用径向基(RBF)神经网络建立声源定位模型的算法,声源定位模型在声源位于近场或者远场的情况下,均可求解出精确的方位角和俯仰角。在MATLAB上进行仿真,结果表明,定位声源的方位角误差小于3°,俯仰角误差小于4°,满足实际定位精度的要求。结果表明为声源准确定位提供了科学依据。 相似文献
3.
为了提高相位变换加权的可控响应功率SRP-PHAT(Steered Response Power-Phase Transform)声源定位算法的性能,提出一种基于分布式麦克风阵列的改进算法。根据分布式麦克风阵列的特点,使用麦克风对接收信号的广义互相关GCC-PHAT(Generalized Cross-Correlation with Phase Transform weighting)函数的最大值来评价接收信号的质量。在传统SRP-PHAT算法的基础上,以该最大值为权重乘以每对麦克风接收信号的GCC-PHAT函数。该算法质量较高的麦克风对接收信号赋予了较大的权重,因而能提高定位性能。仿真结果表明,在信噪比低于10 dB,混响时间大于300 ms的条件下,改进算法的定位成功率比传统算法提高了2%~4%。 相似文献
4.
基于几何形状麦克风阵列的声源定位系统是近年来声源定位的研究热点之一,在众多领域应用广泛.本文在探讨已有的声源定位方法基础之上,对现有声源定位算法的优缺点进行整合,结合三维系统声源定位分布规律,以及TDOA和AOA算法构建仿真模型进行求解. 相似文献
5.
延迟求和波束形成(DSB)在麦克风阵列信号到达角估计上有着广泛应用,然而在语音信号源下由于栅瓣等问题使得该方法对多个语音信号源方位估计不理想,此外,在实际复杂环境下,该方法受噪声混响影响,方位识别更加困难。针对这些问题,提出一种改进的DSB方法,联合信号频率及麦克风阵列间距对子段内的频点进行选择,之后对数据协方差矩阵加权处理。同时在仿真及实际环境下进行实验,结果表明,与未改进DSB方法相比,该方法计算量降低为原来的18.37%,有效地降低了运算量;仿真实验中在不同反射系数0.2、0.4、0.6下,平均角度定位偏差分别降低了27.3%、21.4%、36%;实际环境实验方位角度估计偏差最大值为9°、最低为1.35°,要低于未改进算法的12.1°和3°。 相似文献
6.
准确的时延估计(Time Delay Estimation,TDE)是基于到达时间差(Time Difference of Arrival,TDOA)的声源定位技术的前提.在众多时延估计算法中,广义互相关(Generalized Cross Correlation,GCC)算法因其较低的运算复杂度和易于实现的特点得到了广泛的应用.针对不同的噪声情况,GCC时延估计算法利用不同的加权函数来抑制噪声干扰.本文在介绍麦克风阵列模型和GCC时延估计算法的基础上,针对GCC算法的弊端提出了一种改进算法,并在多种信噪比条件下,对部分加权函数的GCC时延估计算法进行了MATLAB仿真,通过比较其时延估计性能和声源定位精度,分析了这些加权函数各自的优劣性. 相似文献
7.
8.
麦克风阵列声源定位可为在复杂环境下的说话人的空间位置估计提供有效的解决方案。而传统的应用于雷达,声呐系统领域的阵列信号处理理论已趋于完美,很多应用于阵列信号处理的算法加以修改就可以用来进行麦克风阵列的声源定位。以阵列信号处理中的经典算法MUSIC(Multiple Signal Classification)算法为原型,同时根据语音信号在应用中的特点,介绍了一种基于近场的信号模型,并以此为依据对算法进行改进,使声源定位更加精确。对此算法进行了仿真实验,仿真结果表明,此算法具有良好的定位性能,并随着信号信噪比的上升,性能有所提高。 相似文献
9.
10.
麦克风阵列声源定位可为在复杂环境下的说话人的空间位置估计提供有效的解决方案。而传统的应用于雷达,声呐系统领域的阵列信号处理理论已趋于完美,很多应用于阵列信号处理的算法加以修改就可以用来进行麦克风阵列的声源定位。以阵列信号处理中的经典算法MUSIC(Multiple Signal Classification)算法为原型,同时根据语音信号在应用中的特点,介绍了一种基于近场的信号模型,并以此为依据对算法进行改进,使声源定位更加精确。对此算法进行了仿真实验,仿真结果表明,此算法具有良好的定位性能,并随着信号信噪比的上升,性能有所提高。 相似文献
11.
12.
当前平面传声器阵列结合波束形成方法进行声源识别定位时,存在不能确定声源相对全息测量阵列距离的问题,提出了可识别声源深度的三维声聚焦波束形成方法。基于球面波声场模型和波束形成方法,在不同深度的平面上进行声聚焦,首先根据聚焦面上波束形成功率的最大点位置沿聚焦深度方向(即z方向)的轨迹变化判断声源在z方向的位置,再进一步确定声源在x和y方向的位置。为验证方法的有效性,在点声源构成的声场中进行了仿真验证,并且在全消声室内进行了单声源及多声源识别定位的实验验证。仿真结果和实验结果一致表明:该方法能够实现基于平面阵列的三维空间中声源的识别定位。 相似文献
13.
为解决现有语音增强算法需要麦克风数量较多和受估计误差影响较大的问题,提出一种改进的声源定位和波束形成方法。在现有声源定位算法利用时间延迟的基础上,引入能量衰减参数,实现利用双麦克风进行声源定位的目标;在波束形成算法中引入加载系数,在出现协方差矩阵统计失配时仍可对期望方向聚焦,提高波束形成算法的鲁棒性。仿真结果表明,改进后的算法与传统算法相比具有更强的鲁棒性。 相似文献
14.
基于人机交互的实际应用场景,提出了一种交互目标声源三维定位与语音增强算法。该算法首先在广义相关法的基础上提出一种声达时延差的估计方法,通过由6个麦克风构成的平行均匀线阵接收模型,实现对目标声源的三维定位;然后在交互目标声源定位的基础上,通过调整时延波束叠加的权值,实现对目标语音的增强。仿真实验结果表明,文中提出的算法能够准确定位目标声源并对目标语音进行有效增强。在信噪比大于1.5 dB 的环境中,该算法可使目标声源达到98%以上定位精度,5 dB 以上信噪比改善,同时算法运算量小且易于硬件实现。 相似文献
15.
为了提高多个说话人情况下麦克风阵列的定位性能,提出基于子带可控响应功率的多声源定位算法。该算法将语音信号频域分为7个子带,在每个子带计算相位变换加权的可控响应功率函数,在声源空间搜索其最大值得到声源位置的初始估计。根据语音信号频率的稀疏性,这些初始估计包含多个声源的位置,运用会聚聚类算法得到最终的声源位置估计。仿真和实验表明,在有2个说话人,10 dB信噪比,较强混响的条件下,该算法比传统算法的定位正确率提高了约4%,额外率降低了约7%。 相似文献
16.
17.
基于传声器阵列和互相关算法的时间延迟技术对声源进行定位,互相关算法对宽频带信号(扫频信号)定位比较准确,对窄带信号(风琴信号)定位不显著,分析了影响声源定位精度的因素,并改进声源定位系统.通过实验验证了影响风琴信号声源定位的因素,实现了风琴信号的声源定位,并在NI CompactRIO系统上开发了一个实时声源定位系统. 相似文献
18.
基于互相关时延估计算法的被动声定位系统设计 总被引:1,自引:0,他引:1
设计了以TMS320F2812数字信号处理器为核心的基于互相关时延估计算法的被动声定位系统。利用该芯片同时具有数字信号处理器和微控制器的特点,简化了结构设计,提高了系统的处理能力,在完成多路音频信号的同步采集、存储和数据处理的基础上实现了目标的定位。经测试表明:该系统在25m×25m的平面范围内,目标定位时间在2S以内,角度误差小于2.7%,达到了对目标的实时定位。 相似文献
19.
麦克风阵列的声源定位一直是阵列信号处理领域的研究热点.以互功率谱相位估计法(mutual power spectrum phase estimation,CSP)为代表的时延估计法因为其原理简单、计算量小、易于实现而得到广泛应用.虽然CSP算法在高信噪比环境下有不错的估计效果,但当信噪比较低和声学场景较复杂时,算法效果急剧下降.为了解决这一问题,本文对CSP算法进行改进.通过对CSP算法的时延估计结果进行筛选,剔除不合理的时延值,更新算法参数后重新进行估计以得到合理的时延值,并经过多帧信号加权得到声源的时延值与位置信息.为了验证所提算法的有效性,本文分别在Matlab与真实环境下进行了实验验证,结果表明,改进后的CSP算法相比原有算法在时延估计精度方面有明显改善. 相似文献
20.
Zhen Luo Feng Tian Xiao-Ping Sun 《国际自动化与计算杂志》2007,4(1):52-55
Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method.A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper,which includes the followings:the time when the acoustic source signal arrives at the two sensors is measured first;then,the difference of two arriving time arguments is computed,thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace.Avoiding the restriction on acoustic source signal and background noise,the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference. 相似文献