首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
掺加聚乙烯醇(PVA)纤维、玄武岩纤维(BF)及混杂纤维(PVA纤维与BF)对脱硫石膏基复合胶凝材料性能进行改性,研究纤维复合材料的力学性能、耐水性能及耐干湿性能;应用电镜扫描技术对复合材料的微观形貌进行观察,探讨纤维对脱硫石膏基复合胶凝材料的影响机制。结果表明:PVA纤维掺量为1.5%时复合材料力学性能较好,试样的绝干抗折强度和绝干抗压强度较空白组分别提升了92.55%和32.62%;混杂纤维掺量为0.9%时耐水性能较好,试样的抗折软化系数较空白组提升了46.60%、吸水率低至13.87%;混杂纤维掺量为0.6%时耐干湿性能较优,干湿强度系数较空白组提升了50.74%。  相似文献   

2.
为了改善磷建筑石膏强度低、韧性差的不良特性,本文在磷建筑石膏基复合材料中掺入不同直径和掺量的聚乙烯醇纤维,通过试验分析探究聚乙烯醇纤维对磷建筑石膏基复合材料工作性能和力学性能的影响。结果表明,聚乙烯醇纤维的掺入能够显著降低浆体的流动度和缩短浆体的凝结时间。同时,聚乙烯醇纤维的掺入可以显著提高复合材料的力学强度,当纤维直径为15μm、体积掺量为1.6%时,复合材料的力学性能最佳,抗折强度、抗压强度、抗弯强度和抗拉强度分别为10.071、13.25、10.73和2.89 MPa。此外,通过SEM对材料结构的微观形貌进行观察,聚乙烯醇纤维能够分散在磷建筑石膏的孔隙和裂缝中,使复合材料的内部结构更加密实,提高了复合材料的力学性能。  相似文献   

3.
本文研究了膨胀珍珠岩、短切维尼纶纤维、水泥熟料对石膏-粉煤灰基胶凝材料抗折、抗压、软化系数和表观密度的影响.结果表明, 半水石膏-粉煤灰胶结材硬化体的强度随着粉煤灰掺量的增加而降低;添加水泥熟料作为粉煤灰的激发剂,可使石膏-粉煤灰复合材料的耐水性能提高;以珍珠岩作为轻骨料的复合材料,随着珍珠岩质量分数的增加,对复合材料的力学性能影响不是很大,复合材料的密度大大减小;短切维尼纶纤维对复合材料的对抗压强度贡献不大,只可以增强制品的抗折强度.  相似文献   

4.
通过在磷石膏基复合材料(PGC)中掺入不同直径、长度和掺量的玄武岩纤维(BF),探究BF对PGC耐久性能的影响。结果表明,BF的掺入能显著降低PGC的溶蚀率。随着BF掺量的增加,试样干湿循环和冻融循环强度整体提高,且与绝干强度变化机制类似,其中干湿循环的抗压和抗折强度较空白组分别提高了约22.3%和100.3%,冻融循环的抗压和抗折强度则分别提高了近46.5%和124.0%。同时,PGC的干湿循环与冻融循环强度系数整体随着BF掺量的增多而增大,干湿循环抗压和抗折强度系数分别上升至0.95和0.92,冻融循环抗压和抗折强度系数分别增长至0.71和0.62,这表明PGC耐久性能得到显著改善。此外,BF直径对PGC耐久性能的影响并不显著。本研究结果可以为纤维改性石膏基复合材料的耐久性能研究提供一定的参考。  相似文献   

5.
采用磷石膏、玻璃纤维(GF)、聚丙烯纤维(PPF)、缓凝剂、减水剂及水制备了不同纤维长度、不同纤维掺量的磷石膏试件,研究了GF和PPF的纤维长度和掺量对磷石膏试件力学性能的影响,结果表明:相同纤维长度的PPF对磷石膏试件抗折强度的提升优于GF,但当纤维长度在12 mm以上时,GF更有利于试件抗压强度的提高;0.20%及以上掺量的PPF有利于试件抗折强度的提升,0.15%及以上掺量的PPF有利于试件抗压强度的提升;掺量为0.20%的PPF和掺量为0.05%的GF组成的复配纤维虽然能极大提升试件的抗压强度,但对试件的抗折强度不利;掺量相同时,数量较少的长纤维更有利于磷石膏试件抗折强度的提升。  相似文献   

6.
系统研究了粉煤灰-矿渣微粉-脱硫石膏三元胶凝体系的稠度、体积密度、抗折强度、抗压强度、软化系数和粘结拉伸强度等物理力学性能的变化规律。结果表明,相比于纯脱硫石膏,粉煤灰-矿渣微粉-脱硫石膏三元胶凝体系稠度明显增大,具有更好的流动性,略高的新拌体积密度和硬化体积密度,更高的抗折强度、抗压强度和粘结拉伸强度,尤其是后期抗折强度和抗压强度,软化系数也明显增大,耐水性明显提高;且随着粉煤灰和矿渣微粉含量增大,粉煤灰-矿渣微粉-脱硫石膏三元胶凝体系的上述物理力学性能明显提高。  相似文献   

7.
在脱硫石膏基复合胶凝材料(DGCM)中加入不同掺量的碳酸钙晶须,探究了碳酸钙晶须对DGCM的力学性能、耐水性能及耐候性能的影响,并从微观角度揭示碳酸钙晶须的作用机理。结果表明,掺入碳酸钙晶须可以有效改善DGCM的力学性能,随着晶须掺量的增加,硬化体7 d与28 d的绝干抗压强度先缓慢上升后下降又逐渐上升,而绝干抗折强度呈现波动状态;掺入碳酸钙晶须对DGCM耐水性能的提升效果不明显,当掺量大于1%后,大多数试样的吸水率都较空白组有所上升,而软化系数有所下降;碳酸钙晶须有助于提升DGCM的耐干湿性能和耐冻融性能,当掺量为1%时,基体的干湿循环溶蚀率最小达到0.22%,冻融循环强度系数最大达到0.75,试件的耐候性能较好。  相似文献   

8.
磷石膏中掺入聚乙烯醇(PVA)纤维、玄武岩(BF)纤维、聚丙烯腈(PAN)纤维等材料,形成磷建筑石膏。研究纤维在不同掺量下对其凝结时间、抗压、抗折强度的影响,探究纤维对磷石膏的影响趋势和作用机理。结果表明:随着纤维掺入量的增加,会使磷建筑石膏产生逐渐加速凝结的现象,使其凝结时间呈现缩短的趋势,其中BF纤维使其凝结时间下降趋势最为缓慢。同时,三种纤维对磷建筑石膏力学性能的影响趋势几乎一致,随着掺量的增加,磷建筑石膏绝干抗折、抗压强度均呈现先上升后下降的趋势。  相似文献   

9.
任劲滔  胡冗冗  黄炜  权文立 《硅酸盐通报》2023,(12):4254-4261+4282
在普通砂加气混凝土的基础上,以金尾矿砂为硅质材料,玄武岩纤维和气凝胶为增强材料,制备增强型砂加气混凝土,分析玄武岩纤维掺量、玄武岩纤维长度和气凝胶掺量对增强型砂加气混凝土性能的影响。结果表明:随着玄武岩纤维掺量(0.1%、0.2%、0.3%、0.4%,质量分数)和玄武岩纤维长度(3、6、9、12 mm)的增加,砂加气混凝土的干密度、抗压强度、抗折强度以及导热系数随之增大,玄武岩纤维的最优掺量为0.3%,最优长度为6 mm,此时砂加气混凝土的抗压强度较未掺纤维时提高9.64%,抗折强度较未掺纤维时提高21.42%,力学性能较好,导热系数变化较小;气凝胶的最佳掺量为1.5%,此时导热系数降低10.68%,抗压强度、抗折强度略有降低,但仍满足相关强度要求。  相似文献   

10.
为了探明玄武岩纤维的直径、长度、掺量及其两两交互作用对磷石膏基复合材料力学性能的影响机制并实现其多目标优化,采用Box-Behnken响应面法(RSM)设计实验,并建立了复合材料28 d抗压、抗折强度的多项式回归模型。结果表明,纤维掺量对复合材料力学性能的影响最为显著,而直径与长度的交互作用、长度和掺量的交互作用分别是影响其抗压强度和抗折强度的关键性因素,这主要是源于基体在压缩和弯曲过程中的受力特性和不同参数下纤维在其中所产生的应力效应不同。对纤维参数进行优化得出最优条件:纤维直径为13μm、长度为9.439 mm、纤维质量分数为1.023%,该条件下复合材料抗压、抗折强度分别为31.878、6.347 MPa,模型验证实验相对误差分别为2.02%和5.09%,模型精确度高,拟合效果好,表明RSM可用于纤维增强石膏基复合材料的强度预测和纤维参数优化。  相似文献   

11.
为解决波纹夹层结构传统制备方法存在的问题,采用熔融沉积(FDM)3D打印技术制备芳纶增强聚乳酸复合材料波纹夹层结构,并研究切片层高与打印温度对波纹夹层结构力学性能的影响。结果表明:当试样的切片层高为0.1 mm,打印温度为210℃时,复合材料波纹夹层结构的力学性能最好;试样的弯曲强度和冲击强度与切片层高呈负相关;随着打印温度的升高,试样的弯曲强度和冲击强度呈现先增大后减小的趋势。通过分析复合材料电镜图发现,切片层高的降低,有利于芳纶与聚乳酸基体的结合。  相似文献   

12.
以玻璃纤维为增强材料,木屑为轻质骨料,碱式硫酸镁水泥为胶凝材料制备了复合板材.研究了水泥的氧化镁活性、摩尔比、水灰比、外加剂掺量、养护温度、玻璃纤维层数对复合板材不同龄期下的抗折强度和抗压强度的影响.研究结果表明,采用a-MgO/MgSO4摩尔比为6.0,水灰比为0.35,木屑掺量为20%,玻璃纤维层数为3时可制备出抗压强度为35.89 MPa,抗折强度为15.6 MPa的复合板材.采用高温养护,可提高复合板材的早期强度.采用XRD、SEM分析了外加剂和养护工艺对水化相组成和形貌的影响.  相似文献   

13.
以原状磷石膏(RPG)为基材,通过单因素实验研究了原状磷石膏(RPG)与β-半水磷石膏(HPG)相对掺量以及生石灰、水泥、硅灰3种掺合料对磷石膏基复合胶凝材料(PGBM)抗压强度、抗折强度及软化系数的影响规律以及作用机理。结果表明:HPG、生石灰、水泥、硅灰相对掺量的增加均能有效提高PGBM的强度及软化系数,其中硅灰的作用最为明显。但是,当生石灰和水泥的掺量(以质量分数计)分别大于4%和6%时,对PGBM耐水性能的改善不明显。当RPG与HPG相对掺量(质量分数比)为7∶3,生石灰、水泥、硅灰掺量(以质量分数计)分别为4%、12%、5%时,试件28 d抗压强度和软化系数分别可以达到26.29 MPa和0.79。微观分析表明:各掺合料主要通过水化产物填充率影响RPG颗粒之间的接触强度,进而对PGBM的强度和耐水性产生影响。  相似文献   

14.
采用不同的铺层比例以及化学试剂,考察了苎麻/竹纤维复合材料的拉伸强度。试验结果表明:与未处理试样相比,经过KH-570和NaOH处理以后,复合材料试样的拉伸强度有所提高。随着竹纤维含量的增加,经KH-570处理的试样的拉伸强度逐渐增大,而经NaOH处理的试样的结果与之相反。  相似文献   

15.
为研究静态荷载作用下的泡沫铝-钢纤维混凝土复合结构抗压性能,利用万能试验机分别对泡沫铝孔径为3~6 mm、6~9 mm、9~12 mm,钢纤维掺量(体积分数)为0%、0.5%、1.0%、1.5%的泡沫铝-钢纤维混凝土复合层试件进行压缩性能试验和拌合物性能分析,根据试验数据分析泡沫铝的孔径效应对泡沫铝-钢纤维混凝土复合结构压缩性能的影响规律。结果表明:钢纤维混凝土立方体抗压强度随着钢纤维掺量的增加逐渐增大,当钢纤维掺量为1.5%时,与素混凝土相比,其立方体抗压强度约提高22.6%;泡沫铝-钢纤维混凝土复合结构抗压强度相比较钢纤维混凝土提高约5.3%~8.2%,并且泡沫铝-钢纤维混凝土复合结构的静态压缩应力-应变曲线上会出现一段平台区,且平台区会随着泡沫铝孔径的增加而逐渐变长。  相似文献   

16.
改性黄麻纤维增强聚氨酯硬泡性能的研究   总被引:2,自引:0,他引:2  
采用碱处理工艺对黄麻纤维进行了表面改性,提高了纤维对基体树脂的浸润性,改善了纤维与树脂基体的界面粘结。研制了一种新型的黄麻纤维增强硬质聚氨酯结构泡沫材料。测试结果发现,碱处理后纤维表面出现沟槽和裂纹,拔出的单丝纤维表面包覆有聚氨酯基体,纤维与基体结合紧密。压缩性能实验结果表明,添加改性纤维的复合材料,其压缩强度明显提高,当纤维质量分数为3.0%时,复合材料的压缩强度达到最大值(8.01 MPa);纤维质量分数为3.0%、长度为3 mm的短切纤维的增强效果较好;随着纤维含量和长度的增加,复合材料的压缩模量亦随之增大。  相似文献   

17.
本文研究了不同长度聚甲醛(POM)纤维单掺和混掺对砂浆流动度、抗折强度、抗压强度、弯曲韧性及干燥收缩的影响,并通过扫描电镜观测了其微观结构。研究发现,砂浆流动度随POM纤维长度和掺量增大而下降,混掺纤维比单掺对砂浆流动度的影响更小。POM纤维能有效提高砂浆的抗折强度,但掺量超过0.6%(体积分数,下同)时增强效果减弱,与未掺纤维试样相比,0.6%掺量的6 mm纤维对试样28 d抗折强度提升最高,为14.67%,抗压强度随纤维掺量增加而降低。12 mm纤维比6 mm及混掺对试样弯曲韧性提升更明显,最大提高49.43%。纤维的掺入可显著降低试样的干燥收缩率,且随纤维掺量增加,试样90 d干燥收缩率先减小后增大。与未掺纤维试样相比,0.6%掺量的6 mm纤维试样90 d干燥收缩率下降最多,为27.39%。混掺POM纤维在掺量0.6%以上时仍可显著提升砂浆的抗折强度并减小干燥收缩率。  相似文献   

18.
分别制备了锦葵纤维含量为10 %(质量分数,下同)、20 %、30 %、40 %和50 %的锦葵纤维增强增强聚丙烯基复合材料,研究了纤维含量对该复合材料拉伸性能和弯曲性能的影响,并与苎麻纤维增强聚丙烯基复合材料进行了对比。结果表明,随着锦葵纤维含量的增加,锦葵纤维增强聚丙烯基复合材料的拉伸强度和拉伸弹性模量逐渐增加,而弯曲强度和弯曲弹性模量呈现先增大后减小的趋势,当纤维含量为40 %时达最大值;纤维含量均为30 %时,除拉伸弹性模量外,锦葵纤维增强聚丙烯基复合材料的各项指标均低于苎麻纤维增强聚丙烯基复合材料。  相似文献   

19.
硅烷偶联剂对复合水泥砂浆性能的影响   总被引:1,自引:0,他引:1  
通过红外光谱分析及砂浆强度测试,研究了硅烷偶联剂对不同种类复合水泥砂浆的稠度、分层度、抗折强度及抗压强度的影响。结果表明,加入硅烷偶联剂能提高普通水泥砂浆、苯丙胶乳改性水泥砂浆的抗折强度和抗压强度;当硅烷偶联剂质量分数为0.5%时,普通水泥砂浆的抗折强度和抗压强度达到极大值,提高约10%;当硅烷偶联剂质量分数为1%时,苯丙胶乳改性水泥砂浆的抗折强度和抗压强度达到极大值,提高约20%;同时,硅烷偶联剂还能增大普通水泥砂浆和苯丙胶乳改性水泥砂浆的稠度,但砂浆的分层度略有增大。加入经硅烷偶联剂处理的钢纤维,能够提高普通水泥砂浆及苯丙胶乳改性水泥砂浆的抗折强度和抗压强度;当钢纤维用硅烷偶联剂质量分数为1%的硅烷偶联剂水溶液处理时,钢纤维增强砂浆的抗折、抗压强度达到极大值,提高10%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号