共查询到19条相似文献,搜索用时 93 毫秒
1.
目的 针对包装机械设备中滚动轴承应用场景多且有效故障数据难采集而导致的智能诊断方法诊断准确率较低的问题,提出一种基于数据增强的滚动轴承智能诊断方法.方法 首先根据轴承振动信号的故障特征,提出一种数据增强方法,有效扩充训练数据样本多样性.然后采用卷积神经网络对原始样本和增强样本进行故障诊断训练,从而大幅度提高诊断模型的诊断性能.为了验证所提方法的有效性,建立滚动轴承故障试验台并采集轴承故障数据.结果 实验结果表明,在标签训练样本不充足的情况下,提出的方法与不使用数据增强方法相比,模型在诊断准确率方面取得了较大的提高,能够准确地识别各类轴承故障.结论 该方法实现了准确地对稀缺标记样本下滚动轴承故障的诊断,为保证包装机械滚动轴承故障诊断的诊断精度提供了可靠的方法. 相似文献
2.
在信号处理中,现有的常规指标如峭度、峰值、裕度以及谱峭度等对信号因偶然因素引起的数据奇异通常十分敏感,在轴承的状态监测中容易引起误判断。针对这一问题,提出了基于时频的频带熵方法。对信号进行时频变换,再沿时间轴计算各个频率上的幅值谱熵,得到信号的频带熵,以此为特征进行轴承故障的识别。频带熵表征频率成分随时间变化的的复杂性。正常与故障状态的轴承信号频率成分变化的复杂性不同,其频带熵也就不同,因此可将频带熵用于轴承故障的识别。同时偶然因素引起的数据奇异对频率成分变化的复杂性影响很小,频带熵可自动消解这些因素的影响,从而减少对轴承状态的误判断。将频带熵方法用于实际滚动轴承故障的识别,并与峭度、峰值、谱峭度指标对比,证明频带熵能够有效排除数据奇异的干扰,准确判别轴承状态,具有实用性。 相似文献
3.
多尺度散布熵(multi-scale dispersion entropy,MDE 1D)是一种有效衡量一维振动信号复杂性特征的非线性动力学分析法,但其仅能反映振动信号时域中的复杂性特征,无法完整反映振动信号频域的非线性动力学信息。为此,在二维散布熵(two-dimensional dispersion entropy,DE_(2D))的基础上,提出二维时频散布熵(two-dimensional time-frequency dispersion entropy,TFDE_(2D))用于衡量时间序列的时频复杂性特征。同时,为更完整地反映时频分布在不同尺度下的复杂信息,受多尺度粗粒化启发,将传统粗粒化方法拓展到二维多尺度粗粒化,提出了二维多尺度时频散布熵(two-dimensional multi-scale time-frequency dispersion entropy,MTFDE_(2D)),用来量度振动信号时频分布的多尺度复杂性特征。在此基础上,将其应用于滚动轴承故障诊断中的非线性特征提取,提出一种基于MTFDE_(2D)和萤火虫优化支持向量机的滚动轴承智能诊断方法。最后,将所提方法应用于滚动轴承试验数据分析,并与现有方法进行对比。结果表明,所提方法不仅能有效地提取故障特征,实现不同轴承故障类型和故障程度的有效诊断,且诊断效果优于对比法。 相似文献
4.
针对传统诊断方法难以有效提取故障特征的问题,提出了一种基于格拉姆角场(GAF)与TL-ResNeXt相结合的故障诊断方法。首先利用GAF对原始振动信号编码为时间序列相关的二维特征图;再将这些特征图输入到层级更深的分组残差网络ResNeXt中进行自动的识别、分类;模型训练的同时,在网络的最后一层结合了迁移学习(TL)模块以加快模型特征提取能力、快速的进行学习。为了验证该方法的有效性,利用凯斯西储大学轴承数据对比了其他方法,结果表明该方法表现最优。且在轧机模拟实验平台上收集的轴承故障数据表明,该方法在改变工况时同样具有好的泛化性与识别能力。 相似文献
5.
滚动轴承经常工作于多工况、变工况条件下,加之各振源间相互耦合、非线性强等特点,极易诱发系统中轴承零部件的故障.因此,设计滚动轴承故障诊断软件是十分必要的.本文基于LabVIEW设计了滚动轴承的故障诊断界面,主要分为数据采集界面、时域界面、频域界面、智能诊断界面,能够实现对滚动轴承的离线诊断和在线诊断. 相似文献
6.
7.
8.
共振解调技术是轴承故障诊断领域中广泛应用的有效方法,其中解调频带的选取至关重要。传统解调方法仅能识别特征明显的单一轴承故障,而面对旋转机械轴承复合故障的异样微弱特征提取以及不同故障所引发的多个最优解调频带问题时往往难以奏效。为此,提出时频能量聚集谱诊断方法。该方法引入多重同步压缩变换,构造能量聚集的时频图,以解决最优解调频带精确性问题,同时提出能量聚集谱相对因子指标,通过指标实现强弱多故障特征频带综合提取、同步且准确输出,为旋转机械复杂动态信号中微弱和复合轴承故障特征提取与识别提供有利依据。试验结果表明,该方法能成功提取出轴承复合故障特征。 相似文献
9.
针对滚动轴承故障诊断问题,在分析了基于二进制小波包分解的增强峭度图方法的不足后,提出了基于谐波小波包分解的改进增强峭度图方法。通过计算故障信号的改进增强峭度图,筛选出峭度值最大的最优节点,利用最优节点处的谐波小波包系数进行信号重构,并对重构信号做增强包络谱分析,利用故障特征频率的理论计算值与增强包络谱中峰值明显的谱线进行对比,从而对轴承故障类型做出判断。运用所提出的诊断方法分别对滚动轴承内圈故障模拟、实测信号进行分析,结果表明,该方法具有一定的可靠性,能够满足实际的工程需要。 相似文献
10.
针对在滚动轴承故障诊断领域中存在的故障样本较少,健康样本丰富所导致的故障类别失衡问题以及环境中存在噪声与人为噪声标签干扰等问题,提出了一种基于混合裁剪失衡数据增强与SwinNet网络相结合的故障诊断模型(fault diagnosis model combining mixed-cutout imbalance data augmentation and SwinNet, SwinNet-MCIDA)。首先,借鉴图像分类数据增强方法,利用混合裁剪失衡数据增强算法对失衡类别的数据进行裁剪、混合处理生成新的故障样本来增加样本量,构造出增强数据集,然后对增强数据集进行小波变换转换成时频图像,将所得图像输入到卷积神经网络与Swin Transformer编码器相结合的SwinNet网络模型中,进行特征提取和故障分类,从而实现滚动轴承故障的高效诊断。试验结果表明,该文所提出的SwinNet-MCIDA故障诊断方法不仅可以很好地解决滚动轴承故障诊断领域故障类别失衡问题,而且也可以很好地应对故障数据中存在环境噪声问题与人为噪声标签干扰问题。 相似文献
11.
12.
13.
针对强噪声条件下滚动轴承故障冲击特征难以提取的特点,提出了一种基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法。首先通过傅里叶分解将非平稳的原始轴承故障振动信号分解为若干个固有频带函数,然后运用互相关系数法筛选固有频带函数进行信号重构,并对重构后的信号进行奇异值差分谱降噪,最后对联合降噪后的信号进行Hilbert包络谱分析,准确地识别出故障特征频率,进行故障诊断。仿真分析和试验都很好地验证了该方法的有效性。 相似文献
14.
15.
16.
针对振动源数未知且观测信号小于振动源数量的欠定盲源问题,提出一种改进快速寻找密度峰值聚类(FSDPC)的方法。首先将混合信号投影到多维空间上并计算每点的密度值,在此基础上利用最大类间方差法(Otsu)对点密度进行阈值分割,去除干扰点对聚类准确率的影响;然后根据数据的密度峰值确定聚类中心,估计混合矩阵;最后通过L1范数最小化对混合信号进行分离并进行包络谱分析,实现轴承故障诊断。FSDPC_Otsu方法可在源数和聚类中心初值未知的条件下估计混合矩阵,且保证混合矩阵精度。实验结果表明,应用FSDPC_Otsu方法的稀疏成分分析能够对轴承多故障信号进行欠定盲分离,进而实现故障识别与诊断。 相似文献
17.
针对水泵电机轴承故障振动信号噪声大和非平稳性的特点,提出了基于经验模态分解的诊断方法;通过对原始信号进行经验模态分解,得到包含故障特征的固有模态分量,从而可以提取出故障频率.该方法应用于外圈、内圈和滚动体故障诊断,取得了很好效果. 相似文献
18.
针对滚动轴承运转信号单一特征参数对早期故障的敏感性、可靠性问题,提出一种基于IVMD和马田系统的滚动轴承故障诊断方法。该方法首先根据谱相关系数确定VMD分解层数;其次,通过VMD方法对机械振动信号进行处理得到一系列有限带宽固有模态函数,并计算各模态函数的特征参数,在此基础上构建MTS系统的基准空间。引用信噪比的方法筛选有效特征变量,并重新构建MTS的基准空间。最后,计算待诊断信号到基准空间的马氏距离来检测轴承故障,建立滚动轴承早期故障的诊断控制指标。 相似文献
19.
针对传统的滚动轴承故障诊断方法依赖人工特征提取和专家经验,难以自适应提取强噪声信号微弱故障特征的问题,提出一种直方图均衡化和卷积神经网络(CNN)相结合的智能诊断方法。首先,将传感器采集到的一维振动信号通过横向插值法转换为便于模型识别的二维振动图像,利用直方图均衡化技术拉伸像素之间灰度值差别的动态范围,突出纹理细节和对比度,以增强周期性故障特征;然后构建深层CNN模型,采用优化技术降低模型参数量,逐层学习监测数据与故障状态之间的复杂映射关系。实验结果表明该方法具有高达99%以上的准确率,对不同负载下的故障信号仍具有较高的识别精度和泛化能力。 相似文献