首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
蔡皓宇  程树森  马金芳 《钢铁》2012,47(11):16-20
 通过热力学计算,讨论了影响高熔点Ti(C,N)在炉内沉积的因素以及可能导致钛矿护炉效果不佳的原因。结果表明,铁水中的硅含量限制了铁水中的钛含量(w([Ti])≤0.2w([Si])),所以控制适合的冶炼温度促进渣中TiO2还原的同时还要提高铁水中的硅含量,以保证铁水中有足够的钛;另一方面,要通过降低侵蚀炭砖表面温度来降低钛的溶解度,促进侵蚀部位铁水中钛的析出。通过钛平衡计算得知,护炉时需要长期加入含钛炉料,使得含钛保护层脱落后能在短时间内迅速形成。  相似文献   

2.
为进一步分析钛矿护炉条件下,渣铁成分及温度对钛分配比的影响规律,对国内某高炉的生产数据进行统计分析,并借助Fact Sage热力学软件的计算,建立钛分配比的计算模型。结果表明,钛分配比随炉渣碱度的增大而增大,随渣中Ti O2含量的升高而降低;钛分配比与铁水温度、硅含量和钛含量呈正相关性,与铁水硫含量呈负相关性。当入炉钛负荷增大时,为保证护炉效果,应适当提高炉渣碱度、增加铁水硅含量,同时控制铁水硫含量并维持较高的铁水温度。模型计算和现场数据计算的钛分配比随渣铁成分及温度的变化规律基本一致,且实际值约为模型计算值的1.7倍。在实际生产中,可依据钛分配比模型来控制和预测渣铁间的钛分配比。  相似文献   

3.
 为降低铁水中钛含量,采用烧结矿或球团矿进行铁水包脱钛预处理。基于共存理论,采用Matlab编程软件,建立了铁水包脱钛典型渣系SiO2-TiO2-CaO-MgO-FeO-MnO中TiO2活度计算模型。结果表明,随着MgO、FeO、MnO摩尔分数和炉渣碱度的增大,脱钛渣中TiO2活度下降;随着TiO2摩尔分数的增大,TiO2活度提高。脱钛终点铁水中的钛含量与硅含量呈线性关系,其斜率受温度、铁水成分以及炉渣中SiO2和TiO2活度的影响。计算结果与试验结果及实际生产数据十分吻合。  相似文献   

4.
结合柳钢4号高炉钛矿护炉实践,重点对炉缸侧壁温度上升的原因、钛矿护炉的效果,以及影响钛分配比的因素进行了分析。4号高炉炉缸侧壁温度上升的主要原因为炭砖侵蚀、原燃料质量波动,尤其是焦炭质量,以及炉内钛残留量减少等。采取钛矿护炉操作后,侧壁温度明显降低,温度上升势头得到有效控制。高炉钛分配比受渣铁成分和温度的影响较为明显,适当提高炉渣碱度和铁水温度、增大铁水硅含量及降低硫含量等有利于钛分配比的提高。  相似文献   

5.
高炉配加含钛炉料是保护炉缸的措施之一,其护炉机制尚不明确,使用效果差异较大,长期使用还会给高炉操作带来一些不利影响。为此,对钛矿护炉机制和护炉失败原因进行了讨论,并通过热力学计算的方法,系统研究了钛矿护炉时高炉渣TiO2含量、铁水TiC析出温度及钛含量的合理控制范围,从而指导生产实践,为高炉操作者选取钛矿护炉操作参数提供理论依据和参考。研究结果表明:钛矿护炉主要是通过降低铁水流速和促进炭砖复合保护层形成的双重作用来实现。消除炉缸侧壁气隙,保证传热体系的完整,可提高钛矿护炉效果。当前计算工况下,高炉渣中TiO2质量分数、铁水TiC析出温度、铁水中钛质量分数分别控制在1.5%~3.0%、1 300~1 400℃、0.064%~0.11%范围内,能够有效护炉,减轻其带来的不利影响。  相似文献   

6.
杜屏  雷鸣  周夏芝  周海华  马恒保 《炼铁》2021,40(6):21-24
针对沙钢3号高炉炉缸侧壁温度持续升高现象,提出了经济高效低钛护炉方案.经济高效低钛护炉,就是以析出石墨碳为核心,提高铁水[C]含量,降低铁水中碳不饱和度,改善炉缸活性,促进炉缸石墨碳析出.3号高炉低钛护炉期间,逐步减少钒钛矿使用量,铁水[Ti]降低至0.08%以下,炉缸侧壁炭砖温度基本处于400℃以下.同时,高炉日产量...  相似文献   

7.
渣料消耗是转炉炼钢的关键经济技术指标之一,其值高低代表炼钢技术水平,与满足脱磷、护炉要求相矛盾。某钢厂受高炉矿原料配比影响,铁水钛、磷含量较高,为保脱磷、护炉满足要求,渣料消耗较高。为此,基于高钛铁水性质及其转炉成渣特征,优化转炉供氧制度、造渣制度,以“镁固钛”为技术核心,控制炉渣高TiO2含量对脱磷、护炉的影响,提高渣料利用率。通过上述工艺的持续优化,形成了高钛铁水转炉少渣冶炼技术,渣料消耗由55.67 kg/t降低至45.86 kg/t,取得了较好的经济效益,为高效化炼钢技术发展奠定了基础。  相似文献   

8.
张建 《钢铁》2019,54(9):39-43
 高炉炉缸侧壁温度升高是多数钢铁企业正在面临的严峻课题,加钛矿护炉是目前广泛使用的技术手段。为了达到预期的护炉效果、避免钛矿的浪费,以及避免过量钛矿对炉况的消极影响,根据首钢京唐公司两座高炉的炉缸侧壁温度变化数据,测量护炉铁水中的钛含量。通过线性回归分析,细化了相应铁水中的硅质量分数及钛负荷范围。结果表明,首钢京唐1号高炉铁水中钛质量分数应控制在0.055%~0.080%,硅质量分数控制在0.20%~0.35%,钛负荷控制在(6±0.5) kg/t;2号高炉的铁水中钛质量分数应控制在0.08%~0.13%,硅质量分数控制在0.30%~0.45%,钛负荷控制在(7±0.5) kg/t。生产中尽量维持稳定的炉温,减少波动,有利于保护炉缸内衬。此外,也需保证死料柱的活性,严格管控炉前作业,选择合理的冷却制度。  相似文献   

9.
结合首钢股份3号高炉钛矿护炉实践,分析了炉缸侧壁温度上升的原因,并重点探讨了铁水[Ti]、炉渣(TiO2)和钛负荷之间的关系.3号高炉炉缸侧壁温度上升的原因,主要是原燃料质量波动、炉缸不活跃、钛矿净收入量为负数,以及铁口泥包的不合理等.实践表明,钛负荷下限控制在6kg/t([Ti]=0.082%)、上限控制在10kg/...  相似文献   

10.
含钛高炉渣铁侵蚀炉衬的显微结构分析   总被引:2,自引:1,他引:1  
对含钛高炉渣,铁显微结构的研究表明,攀钢高炉随冶炼强度的提高,炉渣组成发生变化,渣中TiC,TiN,Ti(C,N)含量减少,影响护炉效果,含钒钛的铁水中含有TiC,TiN,Ti(C,N),对护炉起着很大作用,因此钒钛矿护炉不单是含钛渣完成的,也有含钒钛铁水的作用。  相似文献   

11.
 高钛钢在浇铸过程中发生渣金反应易出现结鱼现象,恶化铸坯质量,严重时引发漏钢。采用扫描电镜对现场浇铸中出现的结鱼物进行分析,结合高温真空压力烧结炉对不同钛含量的高钛钢和保护渣之间的渣金反应进行研究,并利用旋转黏度仪、熔点熔速测试仪、XRD和OPA金属原位分析仪对渣金的综合性能进行深入探讨。结果表明,随着高钛钢中钛含量的增加,渣金界面反应程度增加;高钛钢钛质量分数为0.05%时,未发生渣金反应;高钛钢钛质量分数为0.10%和0.20%时,发生渣金界面反应,钢中钛质量分数分别减少0.02%和0.04%,钢中硅质量分数分别增加0.02%和0.03%,保护渣中SiO2质量分数分别减少0.36%和0.8%,TiO2质量分数分别增加2.17%和4.3%。渣金反应发生后熔渣碱度增大。钛以氧化物的形式进入熔渣中未溶解,导致熔渣黏度和熔点增大。  相似文献   

12.
通过分析研究超高牌号无取向电工钢35W230冶炼过程中[Ti]的来源和变化趋势,确定了冶炼过程中[Ti]含量升高的主要因素,即渣中(TiO2)还原成为[Ti]进入钢水,和硅铁合金中杂质Ti元素进入钢水。同时确定了影响渣中(TiO2)含量的主要因素,即铁水[Ti]含量和转炉铁矾土加入量。通过选择[Ti]质量分数约为0.02%的低钛铁水,并降低转炉铁矾土加入量至300 kg/炉,与铁水[Ti]质量分数约为0.04%、铁矾土用量约600 kg/炉相比,成品[Ti]质量分数从0.004 43%降低到0.002 58%。在此基础上,进一步优化了RH铝脱氧工艺,钢水脱碳时,加铝预脱氧至0.02%~0.03%,加入硅铁进行脱氧和合金化,利用钢水中的氧去除硅铁合金带中的[Ti],再加入铝丸和电解锰,最终使钢水中的[Ti]质量分数达到了0.002 10%。铸坯全氧质量分数试验炉次为0.001 1%,与正常炉次0.001 0%相差不大。性能上铁损P15/50降低了约0.07 W/kg,磁感J5000提高了0.004 T。  相似文献   

13.
 为了研究在转炉冶炼中高FeO转炉渣条件下钢液的脱磷行为,采用双联法在某钢厂300 t脱磷转炉上展开高氧化性转炉渣脱磷工业试验。通过理论分析并结合XRD、拉曼光谱分析等手段,研究了脱磷温度、转炉渣矿相结构以及终渣成分等因素对高FeO转炉渣条件下钢液的脱磷的影响。通过热力学公式计算发现,脱磷转炉最佳理论脱磷温度约为1 675 K。对比分析了不同脱磷效果的转炉渣的矿相结构,结果表明,2CaO·SiO2和3CaO·P2O5矿相结构有利于脱磷反应的进行,3CaO·SiO2对脱磷效果的影响不明显;Si—O—Si键和[FeO4]键特征峰面积越大,Q0和Q2单元特征峰面积越小,脱磷效果越好。最后研究了脱磷炉钢液脱磷率≥60%时终渣成分的最佳控制工艺参数,碱度R为1.05~1.30,w([FeO])为33%~37%,w([MgO])≤3.0%,w([MnO])为4.3%~5.4%。本研究可以为钢铁企业采用双联法开发超低磷钢提供理论依据和技术指导。  相似文献   

14.
 基于炉外铁水深度预脱硫+转炉铁水预脱磷的铁水预处理工艺是当今低磷或超低磷钢冶炼的重要工艺平台,其中转炉铁水预处理脱磷是关键的技术环节。以国内“双联转炉炼钢法”预脱磷炉实践为出发点,在实验室高温炉上通过顶加脱磷剂、浸入吹氧进行了铁水模拟转炉预脱磷影响因素的试验研究,比较了铁水温度、铁水初始硅质量分数w(Si)i、脱磷渣碱度、供氧制度、搅拌强度、萤石加入量对脱磷效率的影响。结果表明,各因素对脱磷率影响的顺序为铁水温度>w(Si)i>供氧制度>脱磷渣碱度、搅拌强度>萤石加入量;适宜的工艺参数为铁水温度为1 300 ℃,w(Si)i 为0.10%~0.26%或低于0.30%,脱磷渣碱度为2.9~3.0,供氧制度中气氧与固氧各占50%或固氧稍偏多,维持较高的搅拌强度;转炉内铁水预脱磷处理可不加萤石。  相似文献   

15.
刘坤龙  吕明  宋保民  张朝晖  王建江  方明 《钢铁》2022,57(12):79-87
 基于某钢厂Q355B铝镇静钢冶炼过程生成高熔点夹杂物,出现探伤不合格的问题,通过全流程取样分析钢中夹杂物的演变规律,发现原工艺LF精炼过程钙处理前夹杂物主要为低CaO含量的CaO-MgO-Al2O3系夹杂物,Al2O3质量分数约为77%。钙处理后,钢液中CaO-MgO-Al2O3系夹杂物向液相区左侧CaO含量高的区域靠近,Al2O3质量分数减少至32%;同时,CaS在钙铝酸盐表面异质形核,出现CaS-CaO-Al2O3系夹杂物,夹杂物中CaS质量分数增加至23%。应用热力学平衡模型计算钙处理钢液中S-Ca、Al-Ca及Al-S反应平衡曲线。结果表明,在1 873 K下生成C3A、C12A7、CAL等低熔点钙铝酸盐类夹杂物,钢液内w([Al])和w([Ca])的关系应分别满足 w([Al])2/w([Ca])3≤7.83×103、2.36×105、1.18×107,w([Al])和w([S])的关系应分别满足 w([S])3×w([Al])2≤7.79×10-12、8.36×10-11、8.14×10-10;当钢液中w([Al])为0.007 5%时,w([Ca])和w([S])分别控制在0.000 62%~0.001 9%、0.001 6%~0.005 1%范围内有利于生成理想液态产物C12A7。结合夹杂物分析及热力学计算,优化调整了脱氧、喂线等生产工艺,将铝块加入量由0.8 kg/t降低至0.7 kg/t,喂硅钙线量由300 m/炉降低至200 m/炉,并进行全流程取样分析夹杂物变化。发现钙处理后,CaS-CaO-Al2O3系夹杂物中,CaS质量分数降低至约5%,夹杂物分布在低熔点液相区域附近,铸坯中钢液w([Ca])由0.003 1%降低至0.001 5%~0.002 2%;最终夹杂物体系为(CaS)-CaO-(MgO)-Al2O3低熔点复合相夹杂物,防止了高熔点钙铝酸盐类夹杂物及CaS类夹杂物的产生,提高了铸坯质量。  相似文献   

16.
 提高高炉炉料中钒钛磁铁矿的配比(大于80%,甚至达到100%)对于实现攀西地区钒钛磁铁矿资源的深度开发与综合利用意义重大。针对高配比钒钛矿带来超高TiO2高炉渣的情况,提出了“以镁代钙”的新造渣理念。系统地研究了w(TiO2)和w(MgO)/ w(CaO) 对CaO-SiO2-TiO2-MgO-Al2O3渣系黏度和熔化性温度的影响规律。结果表明,惰性气氛下,随着w(TiO2)从20%增加到34%,炉渣黏度逐渐减小;随着w(MgO)/ w(CaO) 从0.32增加到0.65,炉渣黏度略有增大。炉渣熔化性温度随着w(TiO2)增加先升高后降低。“以镁代钙” w(MgO)/ w(CaO) 在0.32~0.65范围内增加时,熔化性温度呈先明显降低后略有升高的趋势, w(MgO)/ w(CaO)在0.57附近时,(w(MgO)为12%)炉渣熔化性温度达到最低点,降低幅度约为50 ℃。“以镁代钙”使得炉渣液相区从钙钛矿析出区域附近逐渐移至钙钛矿相与镁铝尖晶石相之间宽阔的区域。采用“以镁代钙” w(MgO)/ w(CaO) 造渣理念对降低超高TiO2高炉渣熔化性温度具有可行性。  相似文献   

17.
许香帅  赵峥  张延玲 《钢铁》2022,57(5):137-145
 不锈钢硫酸酸洗过程产生大量的酸洗污泥,其成分中含有高含量的CaSO4以及铁、铬等有价金属。活性炭经过多次吸附会丧失活性,但仍保持还原性能。由酸泥、活性炭混匀并焙烧制成含碳球团,在高炉过程渣铁混出时将该球团掷入渣铁熔池进行还原处理,酸泥中的Fe、Cr被还原后进入铁水,其他物质进入高炉渣,实现酸洗污泥的去毒、消纳和资源化利用的目标。鉴于硫酸酸洗后的污泥中含有大量硫元素,重点探讨以上工艺技术中球团焙烧温度、配碳量及球团在熔炼过程的添加量等因素对硫在各相中分配行为的影响趋势,主要采取热力学理论计算、实验室试验等研究手段。结果表明,球团C/S物质的量比为2、球团焙烧温度为400 ℃时,向渣铁浴熔池中加入1%占比的球团可控制渣铁浴终点铁水硫质量分数w([Sf])为0.010%左右,此时熔渣固硫率可达到50%;球团C/S物质的量比为0.5、球团焙烧温度为400 ℃或800 ℃时,向渣铁浴熔池中加入3%占比的球团,也可降低渣铁浴终点铁水硫质量分数,w([Sf])为0.01%左右,且酸泥中Fe/Cr回收率达88.27%,但熔渣固硫率较低。本研究说明,利用渣铁浴工艺处理酸洗污泥,通过合理调控试验参数,可有效控制终点铁水硫含量至较低水平,达到深脱硫效果,同时Fe/Cr具有较高的回收效率,渣铁浴前后炉渣成分变化极小,不会影响高炉渣安全性及后续利用,具有较高的环境和经济效益。  相似文献   

18.
朱仁林  李建立  余岳  朱航宇 《钢铁》2022,57(2):54-62
KR脱硫渣中的CaO是转炉冶炼工艺中重要的造渣原料,将其回用于钢铁冶炼工艺可降低冶金企业的CaO原料消耗,减少企业KR脱硫渣堆积量,节约企业冶炼的经济成本.KR脱硫渣中的2CaO·SiO2 (C2S)在转炉脱磷冶炼过程中可与炉渣中的磷形成稳定的2CaO· SiO2-3CaO· P2O5固溶体,提高磷在渣中的稳定性.将K...  相似文献   

19.
 为了掌握高Al2O3条件下(w(Al2O3)为15%以上)高炉渣系的熔化特性,利用差式扫描量热仪分析了不同w(MgO)/w(Al2O3)、碱度(R)以及w(Al2O3)对高铝高炉渣的熔化温度及熔化热的影响。试验结果表明,炉渣熔化开始温度为1 248~1 291 ℃、熔化结束温度为1 432~1 485 ℃、熔化热为137~211 J/g;当w(Al2O3)=15%、高w(MgO)/w(Al2O3)时,发生了共晶逆反应,导致高炉炉渣熔化开始温度逐渐降低,但由于高炉炉渣的液相线温度基本未变,所以炉渣熔化结束温度基本未发生改变;w(Al2O3)为20%时,随着w(MgO)/w(Al2O3)的增加,炉渣中易生成熔点较高的镁铝尖晶石,导致高炉炉渣熔化开始温度逐渐增大,与此同时,炉渣液相线温度逐渐降低,导致炉渣熔化结束温度逐渐降低;随着碱度R的增加,高炉炉渣中生成了具有高熔点的化合物、炉渣的液相线温度升高,使得高炉炉渣的熔化开始温度逐渐增加、炉渣熔化结束温度逐渐升高;随着w(Al2O3)的增加,发生了共晶逆反应,故炉渣的熔化开始温度逐渐降低,而随着w(Al2O3)的增加,炉渣中键能较大的Al—O键增多,需要在更高温度下才能实现炉渣的最终熔化,即熔化结束温度逐渐增加;随着w(MgO)/w(Al2O3)、R以及w(Al2O3)的增加,炉渣熔化热逐渐增多。分析认为,随着R的增加,炉渣中有高熔点化合物的生成,熔化热增加;随着炉渣中w(Al2O3)的增加,炉渣中Al—O键增多,解聚破坏熔渣结构消耗的热量增多;而随着w(MgO)/w(Al2O3)增加,高熔点化合物的生成或熔化开始温度降低,造成熔化热增加。  相似文献   

20.
基于电硅热法生产300系列不锈钢镍、铬铁合金基料工艺开发,着重研究高硅Fe-Si-Ni熔体的还原脱磷问题。试验证明,Fe-Si-Ni熔体的脱磷率主要取决于熔体中的硅含量,固态脱磷渣的物相结构检测表明,磷元素在渣中的存在形式不仅有Ca3P2简单组分,还存在Ca4SiP4和Ca10+xSi12-2xP16等复杂组分。提出了Fe-Si-Ni熔体还原脱磷过程发生“回磷”现象的反应机理,根据试验数据给出了10 kg感应炉的脱磷宏观反应动力学公式通式为dw([P])/dt = -Aw([P]) + Bt(AB为经验常数)。对于沉淀脱磷(SiCa合金作为脱磷剂,CaO-CaF2为吸附渣),其宏观反应动力学公式为[%P] = 0.101e-0.101t+1.06×10-4t2-0.0301([%P]表示合金中磷的质量分数w([P])乘以100,t表示脱磷时间)。对于界面脱磷(CaO(饱和)-CaF2为脱磷渣),其宏观反应动力学公式为[%P] = 0.113e-0.113t+ 7.76×10-5t2+ 0.001 43。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号