首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-based manufacturing processes are under development for greener manufacturing of lithium ion batteries but their environmental impacts are unclear with new introduced materials and a large consumption of deionized water. We report a life cycle assessment (LCA) study on the water-based manufacturing of the most popular NMC-graphite battery pack configured with 57 kWh capacity. A life cycle model has been developed based on experimental and mathematical studies of the water-based manufacturing processes. Per kg battery pack produced, the water-based manufacturing can reduce the manufacturing energy by 43% and lower the cradle-to-gate life cycle impacts by 0.6%~88% over conventional battery manufacturing.  相似文献   

2.
Materials and processing for lithium-ion batteries   总被引:2,自引:0,他引:2  
Lithium-ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium-ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, the safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium-ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.  相似文献   

3.
随着便携式电子产品及电动汽车的快速发展,提高锂离子电池能量密度和功率密度的研究日益增多,其中负极材料作为锂离子电池必备部件之一已成为重要的研究方向。商用的石墨负极因理论容量较低限制了其应用,锗具有较高的理论比容量和优异的物理化学性质,成为锂离子电池负极材料的研究热点。本文介绍了不同形貌和组成的锗基纳米负极材料的制备方法以及国内外的研究进展,并对未来的发展方向进行了展望。  相似文献   

4.
随着电动车产业的快速发展,锂离子电池的安全问题和快速充电问题越来越受到关注。石墨作为商业化已久的锂离电池负极材料,因其析锂平台近乎于零,而存在因负极析锂而短路的巨大安全隐患,因而不适用于快速充电的锂离子电池负极材料。具有层状钙钛矿结构LiEuTiO4,其脱/嵌锂平台约为0.8V,实际比容量高于200 mAh/g,既可以避免析锂的发生, 又不会导致电池能量密度过低,且倍率性能良好,利用该材料有望发展出一种电动车用安全的快速充电动力电池。本工作总结了钛酸铕锂(LiEuTiO4)负极材料的研究现状,包括分子结构、储锂机制、制备方法及亟待解决的问题,指出进一步的研究方向。  相似文献   

5.
The analysis of recently announced battery packs for plug-in hybrid electric vehicles (PHEV) shows that the design of the series-parallel combinations is being over-complicated. The proven energy densities of lithium-ion cells from about 200 Wh/kg are being reduced to 90 Wh/kg. The majority of the weight increase seems to be for thermal management. Simpler battery pack designs based on electro-refining pot rooms using self-contained rectangular lithium-ion cells with air cooling inside of die-cast magnesium cell tanks would help avoid hauling dead weight in PHEV by providing considerable weight reduction.  相似文献   

6.
In this article, we address the question of whether air pollution resulting from the pyrometallurgical winning, recycling, and casting of lead for car batteries is a serious threat to the environmental acceptability of introducing electric cars. Specifically, we describe an alternative to pyrometallurgical processes—an electrochemical process called CX-EWS that can be used for the winning and recycling of lead. Also presented is a new manufacturing route for battery grids; it employs a combination of electroforming, the codeposition of dispersoids, and the electrowinning of spent batteries. The technology cannot only eliminate the casting of conventional or expanded metal grids but can also serve to reduce battery weight and, thus, increase energy density.  相似文献   

7.
LiCoO2结构及性能与锂离子电池电压特性的关系   总被引:7,自引:0,他引:7  
采用激光衍射 ,BET ,XRD ,SEM等方法 ,研究了系列LiCoO2 正极材料的一些物理化学性能及其与锂离子电池电压特性的关系 ,并对由 3种LiCoO2 样品制成的试验电池进行了电压特性和循环寿命的测试 ,得出了制备有良好电压特性的锂离子电池用LiCoO2 正极材料所应具备的性能 :XRD谱线中I0 0 3 /I10 4 的值较大 ,颗粒分布均匀无团聚 ,表面光滑平整。  相似文献   

8.
To avoid the high purity reagents and high energy consumption involved in the manufacturing of lithium-ion battery anode materials, Sb2S3 nanorods/porous-carbon anode was prepared by remodeling natural stibnite ore with porous carbon matrix via a simple melting method. Due to the nanostructure of Sb2S3 nanorods and synergistic effect of porous carbon, the Sb2S3 nanorods/porous-carbon anode achieved high cyclic performance of 530.3 mA·h/g at a current density of 100 mA/g after 150 cycles, and exhibited a reversible capacity of 130.6 mA·h/g at a high current density of 5000 mA/g for 320 cycles. This shows a great possibility of utilizing Sb2S3 ore as raw material to fabricate promising anodes for advanced lithium-ion batteries.  相似文献   

9.
In recent years,there has been significant growth in the demand for secondary batteries,and researchers are increasingly taking an interest in the development of nextgeneration battery systems.Magnesium-ion batteries(MIBs) have been recognized as the optimal alternative to lithium-ion batteries(LIBs) due to their low cost,superior safety,and environment-friendliness.However,research and development on rechargeable MIBs are still underway as some serious problems need to be resolved.One of the most serious obstacles is the generation of an irreversible passivation layer on the surface of the Mg anode during cycling.In addition to exploring new electrolytes for MIBs,alternative anode materials for MIBs might be an effective solution to this issue.In this review,the composition and working principle of MIBs have been discussed.In addition,recent advances in the area of anode materials(metals and their alloys,metal oxides,and two-dimensional materials) available for MIBs and the corresponding Mg-storage mechanisms have also been summarized.Further,feasible strategies,including structural design,dimension reduction,and introduction of the second phase,have been employed to design high-performance MIB anodes.  相似文献   

10.
Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles,a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries(LIBs)pack/module.In this work,a 25 Ah pouch type Li[Ni_(0.7)Co_(0.15)Mn_(0.15)]O_2/graphite LIBs with specific energy of200 Wh kg~(-1)were designed to investigate their thermal behaviors,including temperature distribution,heat generation rate,heat capacity and heat transfer coefficient with environment.Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge.The heat generation rate is mainly influenced by the irreversible heat effect,while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the temperature during discharge,especially at low rate.Subsequently,a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs.The predicted results match well with the experimental results at all discharge rates.Therefore,the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions.  相似文献   

11.
Safety concerns related to lithium-ion batteries have been the key obstacle to their application in hybrid electric vehicles. Trioctyl Phosphate (TOP) and Cresyl Diphenyl Phosphate (CDP) were studied as potential flame-retarding additives for lithium-ion batteries. The electrochemical performance and thermal stability of the additive-containing electrolytes, in combination with a cell comprising a LiCoO2 cathode and Mesocarbon Microbeads (MCMB) anode, were tested in coin cells. Cyclic Voltammetry (CV), Differential Scanning Calorimetry (DSC), Electrochemical Impedance Spectroscopy (EIS), and Scanning Electron Microscopy (SEM) were used for the experimental analysis. The study results revealed that CDP addition at 5 wt.% improved the cell stability due to the lower rate of the charge-transfer resistance increase over 30–50 cycles. CDP was demonstrated to be a better flame-retarding additive than TOP.  相似文献   

12.
《CIRP Annals》2019,68(1):21-24
A life cycle simulation (LCS) is a powerful tool for evaluating the life cycle scenarios of circular manufacturing. Although many LCSs have been developed so far, they were specific to particular scenarios and products. Therefore, we developed a general-purpose LCS system that can be used to evaluate various life cycle scenarios including multiple circulation paths such as closed-loop and cascade reuse and recycling. This system is useful for developing effective circular manufacturing systems with proper life cycle options. We applied it to a closed-loop and cascade reuse of lithium-ion batteries of electric vehicles in order to demonstrate its effectiveness.  相似文献   

13.
Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles,a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries(LIBs)pack/module.In this work,a 25 Ah pouch type Li[Ni0.7Co0.15Mn0.15]O2/graphite LIBs with specific energy of200 Wh kg-1were designed to investigate their thermal behaviors,including temperature distribution,heat generation rate,heat capacity and heat transfer coefficient with environment.Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge.The heat generation rate is mainly influenced by the irreversible heat effect,while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the temperature during discharge,especially at low rate.Subsequently,a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs.The predicted results match well with the experimental results at all discharge rates.Therefore,the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions.  相似文献   

14.
The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).  相似文献   

15.
由于受电力紧张和电价上涨,以及国家实行低碳经济,中国的铝工业正面临越来越大能源危机和成本危机。本文论述了为降低铝电解槽的能耗,所采取的降低电解槽工作电压的技术措施,即强化电流、优化工艺技术条件,推广应用异型阴极结构电解槽,电解槽节能降耗效果非常明显。  相似文献   

16.
Miniaturization in electronics and rapid advances in portable devices demand lightweight, compact, high-energy density batteries. Lithium batteries offer several advantages such as higher cell voltage, higher energy density, and longer shelf life as compared to other rechargeable systems. Although the rocking-chair concept of utilizing insertion compounds as both cathode and anode hosts has made the rechargeable lithium batteries a commercial reality, cost and environmental considerations require the development of inexpensive electrode hosts such as manganese oxides for consumer applications. Innovative synthesis and processing procedures (including low-temperature, solution-based synthesis approaches to obtain amorphous and nanocrystalline oxide electrode hosts) play a key role in developing new as well as better-performing known electrode materials.  相似文献   

17.
Reducing vehicle weight is an important avenue to improve energy efficiency and decrease greenhouse gas emissions from our cars and trucks. Conventionally, models have estimated acceptable increased manufacturing cost as proportional to the lifetime fuel savings associated with reduced vehicle weight. Vehicle lightweighting also enables a decrease in powertrain size and significant reductions in powertrain cost. Accordingly, we propose and apply a method for calculating the maximum net benefits and breakeven cost of vehicle lightweighting that considers both efficiency and powertrain downsizing for a conventional internal combustion engine vehicle, a battery electric vehicle with a range of 300 miles (BEV300), and a fuel cell electric vehicle (FCEV). We find that excluding powertrain downsizing cost savings undervalues the potential total net benefits of vehicle lightweighting, especially for the BEV300 and FCEV.  相似文献   

18.
锂离子电池具有能量密度高、自放电小和循环寿命长等优点,被广泛用于便携式电子设备和电动汽车等方面,不断推动着社会朝着智能化和清洁化方向发展.简要阐述了锂离子电池的发展历程和工作原理,从材料结构和储锂机制方面对正极材料和负极材料进行分类并综述其性能特点与研究现状,介绍了液态电解液中锂盐、溶剂、添加剂以及固态电解质在锂离子电...  相似文献   

19.
This paper provides a review of materials and designs for sodium-beta alumina battery technology and discusses the challenges ahead for further technology improvement. Sodium-beta alumina batteries have been extensively developed in recent years and encouraging progress in performance and cycle life has been achieved. The battery is composed of an anode, typically molten sodium, and a cathode that can be molten sulfur (Na-S battery) or a transition metal halide incorporated with a liquid phase secondary electrolyte (e.g., ZEBRA battery). In most cases the electrolyte is a dense solid β″-Al2O3 sodium ion-conducting membrane. The issues prohibiting widespread commercialization of sodium-beta alumina technology are related to the materials and methods of manufacturing that impact cost, safety, and performance characteristics.  相似文献   

20.
Layered LiMO_2(M=Ni,Co,and Mn) is a type of promising cathode materials for high energy density and high work voltage lithium-ion batteries.However,the poor rate performance and low power density hinder its further applications.The capacity fade is related to the structural transformation in the layered LiMO_2.In this work,the structural changes of bi-material cathode composed of mesoporous graphene and layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(NCM) were studied via in situ X-ray diffraction(XRD).During different C-rate charge-discharge test at the voltage range of 2.5-4.1 V,the composite cathode of NCM-graphene(NCM-G) reveals better rate performances than pure NCM cathode.The NCM-G composite electrode displays a higher rate capability of 76.7 mAh·g~(-1) at 5 C rate,compared to the pure NCM cathode of 69.8 mAh·g~(-1)discharge capacity.The in situ XRD results indicate that a reversible phase transition from hexagonal H1 to hexagonal H2 occurs in layered NCM material during 1 C chargedischarge process.With the current increasing to 2 C/5 C,the structure of layered NCM material for both electrodes reveals few changes during charge and discharge processes,which indicates the less utilization of NCM component at high C-rates.Hence,the improved rate performance for bi-material electrode is attributed to the highly conductive mesoporous graphene and the synergistic effect of mesoporous graphene and NCM material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号