首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Roditty 《Algorithmica》2012,62(3-4):1073-1087
In this paper we present an algorithm for maintaining a spanner over a dynamic set of points in constant doubling dimension metric spaces. For a set S of points in ? d , a t-spanner is a sparse graph on the points of S such that there is a path in the spanner between any pair of points whose total length is at most t times the distance between the points. We present the first fully dynamic algorithm for maintaining a spanner whose update time depends solely on the number of points in S. In particular, we show how to maintain a (1+ε)-spanner with O(n/ε d ) edges, where points can be inserted to S in an amortized update time of O(log?n) and deleted from S in an amortized update time of $\tilde{O}(n^{1/3})$ . As a by-product of our techniques we obtain a simple incremental algorithm for constructing a (1+ε)-spanner with O(n/ε d ) edges in constant doubling dimension metric spaces whose running time is O(nlog?n).  相似文献   

2.
《国际计算机数学杂志》2012,89(9):1490-1497
Let G be a connected graph. A spanning tree T of G is a tree t-spanner if the distance between any two vertices in T is at most t times their distance in G. If their distances in T and G differ by at most t, then T is an additive tree t-spanner of G. In this paper, we show that any permutation graph has an additive tree 2-spanner, and it can be found in O(n) time sequentially or in O(log n) time with O(n/log n) processors on the EREW PRAM computational model by using a previously published algorithm for finding a tree 3-spanner of a permutation graph.  相似文献   

3.
LetN max(q) denote the maximum number of points of an elliptic curve over F q . Given a prime powerq=p f and an integern satisfying 1/2q+1<n(N max(q)–2)/2, we present an algorithm which on inputq andn produces an optimal bilinear algorithm of length 2n for multiplication in F q n /F q . The algorithm takes roughlyO(q 4+n 4logq) F q -operations or equivalentlyO((q 4+n 4logq)f 2log2 p) bit-operations to compute the output data.  相似文献   

4.
We give the first efficient parallel algorithms for solving the arrangement problem. We give a deterministic algorithm for the CREW PRAM which runs in nearly optimal bounds ofO (logn log* n) time andn 2/logn processors. We generalize this to obtain anO (logn log* n)-time algorithm usingn d /logn processors for solving the problem ind dimensions. We also give a randomized algorithm for the EREW PRAM that constructs an arrangement ofn lines on-line, in which each insertion is done in optimalO (logn) time usingn/logn processors. Our algorithms develop new parallel data structures and new methods for traversing an arrangement.This work was supported by the National Science Foundation, under Grants CCR-8657562 and CCR-8858799, NSF/DARPA under Grant CCR-8907960, and Digital Equipment Corporation. A preliminary version of this paper appeared at the Second Annual ACM Symposium on Parallel Algorithms and Architectures [3].  相似文献   

5.
We present parallel algorithms to construct binary trees with almost optimal weighted path length. Specifically, assuming that weights are normalized (to sum up to one) and error refers to the (absolute) difference between the weighted path length of a given tree and the optimal tree with the same weights, we present anO (logn)-time andn(log lognl logn)-EREW-processor algorithm which constructs a tree with error less than 0.18, andO (k logn log* n)-time andn-CREW-processor algorithm which produces a tree with error at most l/n k , and anO (k 2 logn)-time andn 2-CREW-processor algorithm which produces a tree with error at most l/n k . As well, we describe two sequential algorithms, anO(kn)-time algorithm which produces a tree with error at most l/n k , and anO(kn)-time algorithm which produces a tree with error at most . The last two algorithms use different computation models.The first author's research was supported in part by NSERC Research Grant 3053. A part of this work was done while the second author was at the University of British Columbia.  相似文献   

6.
To study different implementations of arrays, we present four results on the time complexities of on-line simulations between multidimensional Turing machines and random access machines (RAMs). First, everyd-dimensional Turing machine of time complexityt can be simulated by a log-cost RAM running inO(t(logt)1–(1/d)(log logt)1/d) time. Second, everyd-dimensional Turing machine of time complexityt can be simulated by a unit-cost RAM running inO(t/(logt)1/d) time, provided that the input length iso(t/(logt)1/d). Third, there is a log-cost RAMR of time complexityO(n), wheren is the input length, such that, for anyd-dimensional Turing machineM that simulatesR on-line,M requires (n 1 + (1/d))/(logn(log logn)1 + (1/d))) time. Fourth, every unit-cost RAM of time complexityt can be simulated by ad-dimensional Turing machine inO(t 2(logt)1/2) time ifd = 2, and inO(t 2) time ifd 3. This result uses the weight-balanced trees of Nievergelt and Reingold.This paper was prepared while M. C. Loui was visiting the National Science Foundation in Washington, DC, and the Institute for Advanced Computer Studies, University of Maryland, College Park, MD. The views, opinions, and conclusions in this paper are those of the authors and should not be construed as an official position of the National Science Foundation, Department of Defense, U.S. Air Force, or any other U.S. government agency. The research of M. C. Loui was supported by the National Science Foundation under Grant CCR-8922008.  相似文献   

7.
This paper considers the problem of determining whether a set of points can be covered by two discs with centers p and q and common radius r, such that the ratio d(p,q)/r is bounded below by a specified constant, α. An O(n2log2n) algorithm for solving this problem is also presented.  相似文献   

8.
We study the application of the geographic nearest neighbor approach to two problems. The first problem is the construction of an approximately minimum length rectilinear Steiner tree for a set ofn points in the plane. For this problem, we introduce a variation of a subgraph of sizeO(n) used by YaO [31] for constructing minimum spanning trees. Using this subgraph, we improve the running times of the heuristics discussed by Bern [6] fromO(n 2 log n) toO(n log2 n). The second problem is the construction of a rectilinear minimum spanning tree for a set ofn noncrossing line segments in the plane. We present an optimalO(n logn) algorithm for this problem. The rectilinear minimum spanning tree for a set of points can thus be computed optimally without using the Voronoi diagram. This algorithm can also be extended to obtain a rectilinear minimum spanning tree for a set of nonintersecting simple polygons.The results in this paper are a part of Y. C. Yee's Ph.D. thesis done at SUNY at Albany. He was supported in part by NSF Grants IRI-8703430 and CCR-8805782. S. S. Ravi was supported in part by NSF Grants DCI-86-03318 and CCR-89-05296.  相似文献   

9.
The greedy algorithm produces high-quality spanners and, therefore, is used in several applications. However, even for points in d-dimensional Euclidean space, the greedy algorithm has near-cubic running time. In this paper, we present an algorithm that computes the greedy spanner for a set of n points in a metric space with bounded doubling dimension in O(n2logn)\ensuremath {\mathcal {O}}(n^{2}\log n) time. Since computing the greedy spanner has an Ω(n 2) lower bound, the time complexity of our algorithm is optimal within a logarithmic factor.  相似文献   

10.
We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast output-sensitive algorithm for Boolean matrix product and its witnesses is randomized and provides the Boolean product and its witnesses almost certainly. Its worst-case time performance is expressed in terms of the input size and the number of non-zero entries of the product matrix. It runs in time [(O)\tilde](n2sw/2-1)\widetilde{O}(n^{2}s^{\omega/2-1}), where the input matrices have size n×n, the number of non-zero entries in the product matrix is at most s, ω is the exponent of the fast matrix multiplication and [(O)\tilde](f(n))\widetilde{O}(f(n)) denotes O(f(n)log  d n) for some constant d. By the currently best bound on ω, its running time can be also expressed as [(O)\tilde](n2s0.188)\widetilde{O}(n^{2}s^{0.188}). Our algorithm is substantially faster than the output-sensitive column-row method for Boolean matrix product for s larger than n 1.232 and it is never slower than the fast [(O)\tilde](nw)\widetilde{O}(n^{\omega})-time algorithm for this problem. By applying the fast rectangular matrix multiplication, we can refine our upper bound further to the form [(O)\tilde](nw(\frac12logns,1,1))\widetilde{O}(n^{\omega(\frac{1}{2}\log_{n}s,1,1)}), where ω(p,q,t) is the exponent of the fast multiplication of an n p ×n q matrix by an n q ×n t matrix.  相似文献   

11.
We deal with the problem of routing messages on a slotted ring network in this paper. We study the computational complexity and algorithms for this routing by means of the results known in the literature for the multi-slot just-in-time scheduling problem. We consider two criteria for the routing problem: makespan, or minimum routing time, and diagonal makespan. A?diagonal is simply a schedule of ring links i=0,??,q?1 in q consecutive time slots, respectively. The number of diagonals between the earliest and the latest diagonals with non-empty packets is referred to as the diagonal makespan. For the former, we show that the optimal routing of messages of size k, is NP-hard in the strong sense, while an optimal routing when k=q can be computed in O(n 2log2 n) time. We also give an O(nlogn)-time constant factor approximation algorithm for unit size messages. For the latter, we prove that the optimal routing of messages of size k, where k divides the size of the ring q, is NP-hard in the strong sense even for any fixed k??1, while an optimal routing when k=q can be computed in O(nlogn) time. We also give an O(nlogn)-time approximation algorithm with an absolute error 2q?k.  相似文献   

12.
数据仓库系统中层次式Cube存储结构   总被引:11,自引:0,他引:11       下载免费PDF全文
高宏  李建中  李金宝 《软件学报》2003,14(7):1258-1266
区域查询是数据仓库上支持联机分析处理(on-line analytical processing,简称OLAP)的重要操作.近几年,人们提出了一些支持区域查询和数据更新的Cube存储结构.然而这些存储结构的空间复杂性和时间复杂性都很高,难以在实际中使用.为此,提出了一种层次式Cube存储结构HDC(hierarchical data cube)及其上的相关算法.HDC上区域查询的代价和数据更新代价均为O(logdn),综合性能为O((logn)2d)(使用CqCu模型)或O(K(logn)d)(使用Cqnq+Cunu模型).理论分析与实验表明,HDC的区域查询代价、数据更新代价、空间代价以及综合性能都优于目前所有的Cube存储结构.  相似文献   

13.
S. Guha  I. Suzuki 《Algorithmica》1997,17(3):281-307
We consider the following four problems for a setS ofk points on a plane, equipped with the rectilinear metric and containing a setR ofn disjoint rectangular obstacles (so that distance is measured by a shortest rectilinear path avoiding obstacles inR): (a) find aclosest pair of points inS, (b) find anearest neighbor for each point inS, (c) compute the rectilinearVoronoi diagram ofS, and (d) compute a rectilinearminimal spanning tree ofS. We describeO ((n+k) log(n+k))-time sequential algorithms for (a) and (b) based onplane-sweep, and the consideration of geometrically special types of shortest paths, so-calledz-first paths. For (c) we present anO ((n+k) log(n+k) logn)-time sequential algorithm that implements a sophisticateddivide-and-conquer scheme with an addedextension phase. In the extension phase of this scheme we introduce novel geometric structures, in particular so-calledz-diagrams, and techniques associated with the Voronoi diagram. Problem (d) can be reduced to (c) and solved inO ((n+k) log(n+k) logn) time as well. All our algorithms arenear-optimal, as well as easy to implement. An extended abstract appeared inProc. 13th Conf. on the Foundations of Software Technology and Theoretical Computer Science, Bombay, 1993, Springer-Verlag, pp. 218–227. Sumanta Guha was supported in part by a UW-Milwaukee Graduate School Research Committee Award. Ichiro Suzuki was supported in part by the National Science Foundation under Grants CCR-9004346 and IRI-9307506, the Office of Naval Research under Grant N00014-94-1-0284, and an endowed chair supported by Hitachi Ltd. at the Faculty of Engineering Science, Osaka University.  相似文献   

14.
Squares are strings of the form ww where w is any nonempty string. Main and Lorentz proposed an O(nlogn)-time algorithm for finding the positions of all squares in a string of length n. Based on their result, we show how to find the positions of all squares in a run-length encoded string in time O(NlogN) where N is the number of runs in this string, provided that we do not explicitly compute at all “trivial squares” occurring within runs. The algorithm is optimal and its time complexity is independent of the length of the original uncompressed string.  相似文献   

15.
《国际计算机数学杂志》2012,89(3-4):205-226
Ghosh and Bhattacharjee propose [2] (Intern. J. Computer Math., 1984, Vol. 15, pp. 255-268) an algorithm of determining breadth first spanning trees for graphs, which requires that the input graphs contain some vertices, from which every other vertex in the input graph can be reached. These vertices are called starting vertices. The complexity of the GB algorithm is O(log2 n) using O{n 3) processors. In this paper an algorithm, named BREADTH, also computing breadth first spanning trees, is proposed. The complexity is O(log2 n) using O{n 3/logn) processors. Then an efficient parallel algorithm, named- BREADTHFOREST, is proposed, which generalizes algorithm BREADTH. The output of applying BREADTHFOREST to a general graph, which may not contain any starting vertices, is a breadth first spanning forest of the input graph. The complexity of BREADTHFOREST is the same as BREADTH.  相似文献   

16.
A tree t-spanner T of a graph G is a spanning tree of G whose max-stretch is t, i.e., the distance between any two vertices in T is at most t times their distance in G. If G has a tree t-spanner but not a tree (t−1)-spanner, then G is said to have max-stretch of t. In this paper, we study the Max-Stretch Reduction Problem: for an unweighted graph G=(V,E), find a set of edges not in E originally whose insertion into G can decrease the max-stretch of G. Our results are as follows: (i) For a ring graph, we give a linear-time algorithm which inserts k edges improving the max-stretch optimally. (ii) For a grid graph, we give a nearly optimal max-stretch reduction algorithm which preserves the structure of the grid. (iii) In the general case, we show that it is -hard to decide, for a given graph G and its spanning tree of max-stretch t, whether or not one-edge insertion can decrease the max-stretch to t−1. (iv) Finally, we show that the max-stretch of an arbitrary graph on n vertices can be reduced to s′≥2 by inserting O(n/s′) edges, which can be determined in linear time, and observe that this number of edges is optimal up to a constant.  相似文献   

17.
A new scheme for the deterministic simulation of PRAMs in VLSI   总被引:3,自引:0,他引:3  
A deterministic scheme for the simulation of (n, m)-PRAM computation is devised. Each PRAM step is simulated on a bounded degree network consisting of a mesh-of-trees (MT) of siden. The memory is subdivided inn modules, each local to a PRAM processor. The roots of the MT contain these processors and the memory modules, while the otherO(n 2) nodes have the mere capabilities of packet switchers and one-bit comparators. The simulation algorithm makes a crucial use of pipelining on the MT, and attains a time complexity ofO(log2 n/log logn). The best previous time bound wasO(log2 n) on a different interconnection network withn processors. While the previous simulation schemes use an intermediate MPC model, which is in turn simulated on a bounded degree network, our method performs the simulation directly with a simple algorithm.This work has been supported in part by Ministero della Pubblica Istruzione of Italy under a research grant.  相似文献   

18.
We present an O(n 2logn)-time algorithm that finds a maximum matching in a regular graph with n vertices. More generally, the algorithm runs in O(rn 2logn) time if the difference between the maximum degree and the minimum degree is less than r. This running time is faster than applying the fastest known general matching algorithm that runs in $O(\sqrt{n}m)$ -time for graphs with m edges, whenever m=ω(rn 1.5logn).  相似文献   

19.
Fast heuristic algorithms for rectilinear steiner trees   总被引:1,自引:0,他引:1  
A fundamental problem in circuit design is how to connectn points in the plane, to make them electrically common using the least amount of wire. The tree formed, a Steiner tree, is usually constructed with respect to the rectilinear metric. The problem is known to be NP-complete; an extensive review of proposed heuristics is given. An early algorithm by Hanan is shown to have anO(n logn) time implementation using computational geometry techniques. The algorithm can be modified to do sequential searching inO(n 2) total time. However, it is shown that the latter approach runs inO(n 3/2) expected time, forn points selected from anm×m grid. Empirical results are presented for problems up to 10,000 points.  相似文献   

20.
A positive integern is a perfect power if there exist integersx andk, both at least 2, such thatn=x k . The usual algorithm to recognize perfect powers computes approximatekth roots forklog 2 n, and runs in time O(log3 n log log logn).First we improve this worst-case running time toO(log3 n) by using a modified Newton's method to compute approximatekth roots. Parallelizing this gives anNC 2 algorithm.Second, we present a sieve algorithm that avoidskth-root computations by seeing if the inputn is a perfectkth power modulo small primes. Ifn is chosen uniformly from a large enough interval, the average running time isO(log2 n).Third, we incorporate trial division to give a sieve algorithm with an average running time ofO(log2 n/log2 logn) and a median running time ofO(logn).The two sieve algorithms use a precomputed table of small primes. We give a heuristic argument and computational evidence that the largest prime needed in this table is (logn)1+O(1); assuming the Extended Riemann Hypothesis, primes up to (logn)2+O(1) suffice. The table can be computed in time roughly proportional to the largest prime it contains.We also present computational results indicating that our sieve algorithms perform extremely well in practice.This work forms part of the second author's Ph.D. thesis at the University of Wisconsin-Madison, 1991. This research was sponsored by NSF Grants CCR-8552596 and CCR-8504485.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号