首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Separation of U(VI) and Th(IV) from Nd(III) in nitric acid media with solutions of tri-iso-amyl phosphate (TiAP) in n-dodecane has been studied by batch extraction in cross-current mode to evaluate the feasibility of employing TiAP as an alternate extractant to tri-n-butyl phosphate (TBP) for monazite ore processing. The interference of U(VI), Th(IV), and Nd(III) in the presence of each other during their analyses by titrations has also been validated in the present study. The extraction studies substantiate that the high solvent loading conditions can be achieved without organic phase splitting in the extraction from concentrated feed solutions with TiAP based solvents, whereas TBP forms third phase under such conditions. The separation factor for Th(IV) with respect to Nd(III) can be improved with TiAP as the extractant and by carrying out the extraction with feed solution in 8 M HNO3. Solvent extraction studies conducted with solutions of U(VI), Th(IV), and Nd(III) in nitric acid media by TBP and TiAP revealed the identical extraction, scrubbing, and stripping behavior of both the extractants with respect to U(VI), Th(IV), and Nd(III). The results insinuate that TiAP can be used as an alternate extractant to TBP for the separation of U(VI) and Th(IV) from monazite ores. The data generated in the present study can be exploited for the development of flow sheets using TiAP based solvents to separate U(VI) and Th(IV) from rare earths for the processing of monazite leach solutions.  相似文献   

2.
Third‐phase formation in the extraction of Th(IV) by trialkyl phosphates (TalP) such as tri‐n‐butyl phosphate (TBP), tri‐iso‐butyl phosphate (TiBP), tri‐sec‐butyl phosphate (TsBP), tri‐n‐amyl phosphate (TAP), tri‐2‐methylbutyl phosphate (T2MBP), tri‐iso‐amyl phosphate (TiAP), tri‐sec‐amyl phosphate (TsAP), and tri‐cyclo‐amyl phosphate (TcyAP) has been investigated under various conditions. Formation of a third phase in the extraction of Th(IV) by TBP/n‐dodecane as a function of TBP concentration at 303 K was studied. Measurements were also carried out on the extraction of Th(IV) from its solution with near‐zero free acidity by various phosphate/diluent binary solutions (1.1 M) as a function of temperature. Third‐phase formation in the extraction of Th(IV) by 1.1 M TalP in various diluents from nitric acid media has also been studied as a function of equilibrium aqueous‐phase acidity at 303 K. Empirical equations to predict limiting organic concentration with respect to various parameters for third‐phase formation in the extraction of Th(IV) by TBP and TAP from nitric acid media have been derived. Some of the above phosphates have been investigated for the distribution of Th(NO3)4 between the “diluent‐rich phase” (DP) and “third‐phase” (TP) in the extraction of Th(IV) by 1.1 M TalP in various diluents from its saturated solution with near‐zero free acidity at 303 K. Results of the above studies are presented in this paper. Based on these studies, the effects of extractant concentration, the temperature, the nature of the diluent, the equilibrium aqueous‐phase acidity, and the structure of the extractant on third‐phase formation behavior of trialkyl phosphates are described in this paper.  相似文献   

3.
Third phase formation in the extraction of Th(IV) by 1.1 M solutions of tri-n-butyl phosphate (TBP) in n-decane and n-hexadecane from Th(NO3)4 solution in 1 M HNO3 has been investigated as a function of equilibrium aqueous phase Th(IV) concentration ([Th(IV)]aq,eq) to estimate the concentrations of Th(NO3)4, HNO3, and TBP in the third phase (TP) and the diluent-rich phase (DP). In this connection, new methods for the estimation of TBP in the organic phases after the phase splitting have been developed by exploiting the linear relationships of the density and refractive index of the solvent, the limiting organic concentration (LOC) for the third phase formation in the extraction of Th(IV) from solution with near-zero free acidity with TBP concentration in the solvent. TBP concentrations estimated by the above-mentioned methods have been validated by nitric acid (8 M) equilibration method. Experimental values for the concentration of TBP in the TP and DP for 1.1 M TBP/n-alkane–Th(NO3)4/1 M HNO3 systems have been compared with the values computed based on a model proposed earlier. In addition, the density of organic phases and the ratio of the volume of the DP to that of the TP have been measured for the above-mentioned systems as a function of [Th(IV)]aq,eq at 303 K.  相似文献   

4.
5.
《分离科学与技术》2012,47(13):2013-2019
Separation of U(VI) from Th(IV) and rare earth elements (REEs) present in monazite leach solution (nitric acid medium) has been studied using tris(2-ethylhexyl) phosphate (TEHP) and tri-n-butyl phosphate (TBP) dissolved in n-paraffin as solvents under varying experimental conditions such as nitric acid, extractant and metal ion concentrations etc. There is an increase in distribution ratio of U(VI) (D U ) with increase in aqueous phase acidity up to 5 M HNO3 beyond which a decrease is observed. Typically for 1 × 10?3 M U(VI), the DU values increase from 8 (0.5 M HNO3) to 80 (5 M HNO3) for 1.1 M TEHP, and from 2 (0.5 M HNO3) to 43 (5 M HNO3) for 1.1 M TBP in n-paraffin. The separation factors of U(VI) (β: DU/DM) over metal ions (M) such as Th(IV) and Y(III) (chosen as a representative of heavy REEs) are better for TEHP than TBP at all nitric acid concentrations. Batch solvent extraction data have been used to construct the McCabe-Thiele diagrams for the recovery of U(VI) employing TEHP as the extractant. A process flow sheet has been proposed with 0.2 M TEHP in n-paraffin as solvent for the recovery of U(VI) from simulated monazite leach solution in HNO3 medium.  相似文献   

6.
The extraction of U(VI), Th(IV), and lanthanides(III) from aqueous nitric acid solutions with mixtures of N,N,N′,N′-tetra(n-octyl)diglycolamide (TODGA) and dinonylnaphtalene sulfonic acid (HDNNS) in n-decane has been investigated. The extraction efficiency of U(VI), Th(IV), and Ln(III) ions is greatly enhanced by addition of HDNNS to an organic phase containing TODGA. The synergistic effect arises from the higher hydrophobicity of U(VI), Th(IV), and Ln(III) extracted species formed by TODGA and DNNS? anions as compared to those formed by TODGA and NO3? ions as counter anions. The synergistic effect for U(VI), Th(IV), and Ln(III) extraction from aqueous nitric acid solutions with mixtures of TODGA and HDNNS becomes weaker when the acidity of the aqueous phase increases. A high synergistic enhancement is accompanied with a high selectivity of Ln(III) extraction from nitric acid solutions.  相似文献   

7.
ABSTRACT

Phase splitting of tributylphosphate (TBP)/n-dodecane organic phases resulting from the extraction of UO2(NO3)2, Th(NO3)4 and mixtures of both actinides from aqueous nitrate solutions has been investigated. Limiting organic concentrations (LOC) and metals distribution beyond third phase formation have been determined, with comparison between the cases of single metal-systems and metals mixtures. Simultaneous quantification of TBP and both metals was achieved through X-ray fluorescence (XRF) analyses. LOC studies reveal that thorium (IV) drives the third phase formation as it is the most destabilizing element in the solvent. After organic phase splitting, studies of the distributions of metals between the heavy organic phase (HOP) and the diluted organic phase (DOP) in the case of U(VI)/Th(IV) mixtures revealed that they are similar to those observed when both metals are alone in the solvent: Thorium (IV) has a strong affinity for the HOP, whereas uranium (VI) distributes both in HOP and in DOP. A supersaturation coefficient (NLOC) is proposed as a new tool to account for the data obtained in the present study. Furthermore, the approach was successfully applied to analyse available data in the literature regarding thorium (IV) distribution studies after phase splitting in various TBP-alkane solvents. Such a study beyond third phase formation paves the way for studying the mechanism involved in third phase formation, as the metal is clearly identified as the key parameter.  相似文献   

8.
Abstract

Diamylamyl phosphonate (DAAP) was synthesised by the Michealis Becker reaction, and was characterized by elemental analysis, IR, and 31P NMR. The extraction of U(VI), Th(IV), Pu(IV) and Am(III) by 1.1 M DAAP in n‐dodecane as a function of nitric acid concentration was studied and the results are compared with the extraction behavior of these ions by tributyl phosphate (TBP) and triamyl phosphate (TAP) in n‐dodecane. Some important physical properties of the extractant that have to be met for its use in industrial scale liquid‐liquid extraction such as density, surface tension, viscosity and phase disengagement time with 1.1 M DAAP/n‐dodecane have been measured and compared with those of 1.1 M TBP/n‐dodecane. Studies on the third phase formation behavior of DAAP/n‐dodecane with U(VI) and Th(IV) nitrates in nitric acid medium have been carried out and the results are reported. The breakthrough and elution behavior of U(VI) using a column packed with 50% (w/w) DAAP impregnated on Amberlite XAD‐7 was studied and reported.  相似文献   

9.
Binary solutions of tri-n-butyl phosphate (TBP) or tri-iso-amyl phosphate (TiAP) in n-dodecane or n-tetradecane (1.1 M) as diluents have been investigated for third phase formation in the extraction of Th(NO3)4 from its solutions with 1 M or 5 M HNO3 as a function of equilibrium aqueous phase Th(IV) concentration ([Th(IV)]aq,eq) at 303 K. Extraction isotherms for the extraction of Th(IV) and HNO3 have been generated with respect to [Th(IV)]aq,eq. The difference in density between the third phase and the diluent-rich phase as well as the diluent-rich phase and the pure diluent, ratio of volume of the diluent-rich phase to that of the third phase have also been determined over a wide range of [Th(IV)]aq,eq in the triphasic region. An attempt has also been made to determine the extractant concentrations in the third phase and the diluent-rich phase in the extraction of Th(NO3)4 by the above solvents from its saturated solutions with 1 M and 5 M HNO3.  相似文献   

10.
A series of long chain disubstituted aliphatic amides have been prepared with different substituting groups and the extracting ability for U(VI), Th(IV) and some fission products like Am(III), Zr(IV), Eu(III) and Cs from nitric acid solutions has been studied. All results were compared with those obtained by using TBP under the same conditions. All prepared amides exhibit higher U-Th separation factors than TBP. Distribution ratios of U(VI) as function of nitric acid concentration, extractants concentration and salting-out agent have been measured by using N,N-dihexyloctanamide (DHOA) and N,N-dihexyl(2-ethyl)hexylhexanamide (DHEHA), which were chosen for further studies. The extraction behviour of U(VI), Th(IV) and Zr(IV) with gamma irradiated DHOA, DHEHA and TBP in toluene from 3 M HNO3 has been studied as a function of absorbed doses. Back extraction of U(VI), Th(IV) and Zr(IV) from organic phases was also studied.  相似文献   

11.
ABSTRACT

The extraction behaviour of 1M solutions of tri-2-ethylhexyl phosphate (TEHP), di-2-ethyl hexyl isobutyramide (D2EHIBA), tri-n-butyl phosphate (TBP) and di-n-hexyl hexanamide (DHHA) in n-dodecane towards U(VI), Th(IV) and Pa(V) in the presence of 220 g/L of Th from nitric acid medium has been studied. The limiting organic concentrations (LOC) of thorium (g/L) for 1 M TBP and 1 M DHHA are evaluated as 31, 20 ( at 1 M HNO3) and 25,13 (at 4 M HNO3) respectively. The distribution ratio (D) values of U(VI), Th(IV) and Pa(V) in the presence of thorium (220 g/L) at. 1 M HNO3 suggest that branching in the alky group of amides suppresses the extraction considerably. In view of the selective extraction of U over Th by 5 % TBP in THOREX process at 4 M HNO3, distribution behaviour is also studied employing a lower concenfration (0·18 M) of extractant for comparison purpose, Separation factor (S. F.) values for U(VI) over Th(IV) under different experimental conditions consistently varied in the order: D2EHIBA > DHHA > TEHP > TBP. The quantitative extraction of 233U from a synthetic mixture containing 233U (10?5 M). 233Pa (10?11 M) and thorium (220 g/L) at 1 M HNO3 using 1 M solution of D2EHIBA in n-dodecane is achieved in three stages, Stripping and reusability studies of D2EHIBA have also been carried out.  相似文献   

12.
The density of various trialkyl phosphates (TalP) such as tri‐n‐butyl phosphate (TBP), tri‐iso‐butyl phosphate (TiBP), tri‐sec‐butyl phosphate (TsBP), tri‐n‐amyl phosphate (TAP), tri‐2‐methylbutyl phosphate (T2MBP), tri‐iso‐amyl phosphate (tri‐3‐methylbutyl phosphate, TiAP), tri‐sec‐amyl phosphate (tri‐2‐amyl phosphate, TsAP), tri‐cyclo‐amyl phosphate (TcyAP), tri‐n‐hexyl phosphate (THP), and 1.1 M solutions of some of these phosphates in various diluents, solubility of water in trialkyl phosphates, and the aqueous solubility of trialkyl phosphates have been measured. Extraction of nitric acid, Th(IV), and U(VI) by trialkyl phosphates has also been studied by the batch extraction method. Metal‐solvate stoichiometry in the extraction of Th(IV) and U(VI) by some of the phosphates has been evaluated. Data on the extraction of U(VI) by various trialkyl phosphates as a function of equilibrium aqueous‐phase nitric acid concentration at 303 K are presented in this paper. Data on the extraction of Th(IV) and U(VI) from 1 M and 5 M HNO3 by trialkyl phosphates as a function of equilibrium aqueous‐phase metal concentration at 303 K are also presented in this paper. The effects of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior are described in this paper.  相似文献   

13.
Abstract

The extraction of uranium(VI) by triisoamyl phosphate (TiAP) has been studied to derive the thermodynamic parameters such as entropy change and the free-energy change. The extraction of U(VI) and Pu(IV) has also been studied with 1.1 M solutions of tri-n-butyl phosphate (TBP), tri-n-amyl phosphate (TAP), and TiAP as a function of temperature. While the enthalpy of U(VI) extraction was found to be exothermic, the enthalpy for the extraction of Pu(IV) was always found to be endothermic. The temperature at which the distribution ratios of U(VI) and Pu(IV) cross each other (the temperature of inversion) has been derived for TBP, TAP, and TiAP, and the results reveal the lowest temperature of inversion occurs for TiAP. The results indicate the advantage of TiAP as an extractant in avoiding plutonium reflux during the PUREX process involving high plutonium feed solutions, in addition to lower aqueous solubility, freedom from the third-phase formation problem, lower degradation, and better economics.  相似文献   

14.
《分离科学与技术》2012,47(18):2761-2770
Third phase formation in the extraction of Th(NO3)4 from its solution with near-zero free acidity by 1.1 M solutions of tri-iso-amyl phosphate (TiAP) in n-dodecane, n-tetradecane, n-hexadecane, and n-octadecane has been investigated as a function of equilibrium aqueous phase Th(IV) concentration at 303 K. Distribution of Th(NO3)4 between organic and aqueous phases as well as the variation of densities of organic phases in biphasic and triphasic regions for its extraction by the above-mentioned solvents have been investigated with respect to equilibrium aqueous phase Th(IV) concentration under the above experimental conditions. Data on the ratio of volume of the diluent-rich phase to that of third phase for various TiAP/n-alkane-Th(NO3)4-303 K systems have also been generated in the present study. The results obtained are compared with literature data available for tri-n-butyl phosphate (TBP) and tri-n-amyl phosphate (TAP) systems which were experimented under identical conditions.  相似文献   

15.
ABSTRACT

The use of tetra-alkylcarbamides as novel extractants for the separation of uranium(VI) and plutonium(IV) by solvent extraction from spent nuclear fuels is investigated in this study. Batch extraction experiments show that tetra-alkylcarbamides strongly extract U(VI) with high distribution ratios. Plutonium(IV) can be co-extracted with U(VI) at high nitric acid concentration, while high U(VI)/Pu(IV) selectivities can be reached at lower acidity. Loading capacity experiments with high uranium concentrations show that alkyl chains longer than butyl are necessary to avoid third phase formation. Nevertheless, the viscosity of uranium-loaded solvents gets too high with alkyl chains longer than pentyl. Overall, this study shows that with TPU extractant (with four pentyl chains), an efficient co-extraction of uranium and plutonium can be reached (DU,Pu > 1) for a concentration of nitric acid higher than 4 mol?L?1, while the partition between uranium(VI) and plutonium(IV) could be operated even at 2 mol?L?1 nitric acid without redox chemistry.  相似文献   

16.
Abstract

The splitting of a system from biphasic to triphasic was studied in the liquid‐liquid extraction of Ir(IV) and HCl using Cyanex 923 (C923). The limiting organic concentrations (LOC) of Ir(IV), which are the maximum possible concentrations of Ir(IV) in the organic phase without the formation of a third phase, were determined under different experimental conditions. The experimental conditions investigated were: concentrations of HCl and NaCl in the aqueous phase, concentrations of C923 and a modifier (tributyl phosphate (TBP) or decanol) in the organic phase, and an organic phase made with different diluents such as n‐octane, n‐nonane, n‐dodecane, kerosene, cyclohexane, toluene, and xylene. The formation of a third phase depends on the concentration of Ir(IV) and HCl in the aqueous phase, as well as on the other experimental conditions. The third phase appeared without Ir(IV) when the concentration of HCl in the equilibrated aqueous phase was 3.5 M and the organic phase contained 10% (v/v) C923/kerosene. The maximum LOC of Ir(IV) was obtained when the initial concentration of HCl in the aqueous phase was 2 M. The LOC of Ir(IV) can be increased though the addition of typical solvent modifiers (such as TBP or decanol) in the organic phase. The LOC of Ir(IV) varied significantly when it was extracted from an aqueous solution containing different concentrations of NaCl. The values obtained for the LOC using different diluents were in the following decreasing order: toluene ≈ xylene>cyclohexane>n‐octane>n‐nonane>kerosene>n‐dodecane. No third phase was detected when toluene and xylene were used as diluents. In the case of cyclohexane, no third phase was observed when the aqueous phase contained 4 M HCl. Spectral studies were performed to investigate the chemical composition of the third phase obtained with Ir(IV)‐HCl‐C923.  相似文献   

17.
Third phase (TP) formation in the extraction of Th(IV) by tris(2-methylbutyl) phosphate (T2MBP) from HNO3 media was studied and compared with tri-n-butyl phosphate (TBP) systems. Concentrations of Th(IV) and HNO3 and densities of organic phases were determined as a function of Th(NO3)4 concentration. Extractant concentrations and volume ratios in the triphasic regions were also measured. The extraction experiments show lower TP formation tendency of T2MBP. The aggregation behaviour of Th(IV) loaded solutions of tri-n-amyl phosphate (TAP), T2MBP and TBP in n-C8D18 and n-C12D26 were investigated using small angle neutron scattering technique and found to be in correlation with TP formation trends.  相似文献   

18.
A new solvent-impregnated resin (SIR) was constructed using Amberlite XAD-2 and 3-hydroxy-2-naphthoic acid (3H2NA). The SIR was applied for stepwise extraction of Th(IV) and U(VI) from the coexistence ions dissolved in aqueous media at pHs of 3.0 and 7.0, respectively. The U(VI) and Th(IV) ions adsorbed on the minicolumn were consecutively eluted with 0.5 M and 4 M HCl solutions. They were then measured by Arsenazo III at their maximum absorption wavelengths. The characteristic parameters for the successful separation of these ions from the aqueous media were investigated. The SIR showed excellent reproducibility during the 800 subsequent extraction cycles.  相似文献   

19.
Abstract

A study on plutonium third phase formation in 30% TBP/nitric acid/hydrogenated polypropylene tetramer (HPT) was performed. Characterization studies of HPT indicate its composition to be a mixture of many highly branched alkanes with a volatility close to n‐undecane. This composition results in about a factor of two better resistance to Pu(IV) third phase formation than dodecane. At 7 M nitric acid in the aqueous phase, the presence of Pu(VI) was observed to substantially reduce the organic phase metal concentration necessary to induce phase splitting in both diluents. Spectroscopic investigation of mixed valence systems also suggest a prominent role for Pu(VI) in the formation of the dense organic phase. Accumulation of Pu(VI) in the heavy phase, as well as certain spectral features, suggest that Pu(VI) is forming a different species, possibly a plutonyl trinitrato, with a strong tendency to form third phase.  相似文献   

20.
《分离科学与技术》2012,47(7):1445-1458
Abstract

The gel-liquid extraction of U(VI), Th(IV), Ce(III), and Co(II) has been investigated in the 0.01 to 2 M HNO3 range using a gel prepared by swelling styrene divinylbenzene with di-(2-ethylhexyl)phosphoric acid. Obtained results indicate that all of the tested cations can be extracted and that the extraction coefficients increase in the order Ce(III) < Co(II) < Th(IV) < U(VI) and generally decrease with acidity. Under suitable conditions, separation of Th(IV), Ce(III), or Co(II) from U(VI) or of Th(IV) from Ce(III) can be achieved. Kinetic studies indicate that the extraction process is controlled by a progressive shell sorption mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号