首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that radiofrequency (RF) electrode displacement or deformation-based strain imaging can be used as an alternate imaging modality to monitor and to evaluate ablative therapies for liver tumors. This paper describes a biomechanical model used to study RF electrode deformation-based strain imaging, in conjunction with a simulated medical ultrasound linear array transducer. The computer simulations reported here are important steps toward understanding this biomechanical system in vivo, thus providing a basis for improving system design, including the motion tracking algorithm and image guidance for performing RF electrode displacement-strain imaging in vivo.  相似文献   

2.
Two approaches for free-hand motion tracking that enable volumetric quantification of the murine heart were investigated. One approach used an instrumented, multijointed articulated arm attached to a 14 MHz ultrasound transducer array. A second approach used an E-beam transducer--a modified linear transducer array containing a main imaging array adjacent to three perpendicular tracking arrays. Motion between successive B-mode image frames was computed by tracking image speckle in each tracking array. Both tracking systems produced accurate results in a phantom validation study (4.50% error and 3.75% error for estimates derived using the articulated arm and E-beam tracking techniques, respectively). The tracking approaches also were tested in vivo on three mice. Results were compared to values obtained by mounting each mouse on a micromanipulator, adjusting its position by 0.5-mm increments, and acquiring B-mode images using a high-resolution ultrasound scanner. Left ventricular end diastolic volume (LVEDV) estimates differed from values obtained using the high-resolution scanner by a mean error of 18.2% and 2.60% for eight scans conducted on each of two mice using the articulated arm, and a mean error of 13.6%, 6.53%, and 12.58% for eight scans conducted on each of three mice using the E-beam.  相似文献   

3.
Noninvasive elastography (NIVE) produces elastograms that are difficult to interpret because NIVE visualizes strain in the transducer coordinate system. In this paper, we hypothesized that transforming normal and shear strain elastograms to the vessel coordinate system will produce better strain elastograms. To corroborate this hypothesis, we acquired synthetic-aperture (SA) ultrasound data from simulated and physical vessel phantoms. In both studies, SA echo frames were reconstructed from data acquired with a sparse transducer array. The simulation study was performed with homogeneous and heterogenous phantoms, but in the experimental study we used a modified ultrasound scanner to acquire SA data from homogeneous (n = 1) and heterogeneous (n = 3) vessel phantoms. Axial and lateral displacements were estimated by performing two-dimensional cross-correlation analysis on the beamformed RF echo frames. We generated radial and circumferential strain elastograms by transforming normal and shear strain elastograms to the vessel coordinate system. The results revealed: 1) radial and circumferential strain elastograms acquired from simulated data had a relative root mean squared error on the order of 0.1%; 2) experimentally acquired radial and circumferential strain elastograms had elastographic contrast-to-noise ratio (CNRe) between 10 and 40 dB, and elastographic signal-to-noise ratio (SNRe) between 10 and 35 dB, depending on the number of active transmission elements employed during imaging; 3) radial and circumferential strain elastograms produced with fewer than 8 active transmission elements were inferior to those computed with a greater number of active elements; and 4) plaques were evident in the strain elastograms, except in those obtained with the sparsest transducer array. This study demonstrated that a syntheticaperture ultrasound system could visualize radial and circumferential strain noninvasively.  相似文献   

4.
Several important clinical applications depend on accurate ultrasound image frame-to-frame motion estimation. Assuming that there is a degree of finite noise in the image frames and that speckle partially decorrelates between successive frames during freehand scanning, we hypothesize that an optimal inter-frame interval (step size) must exist that provides the smallest relative dimensional error over a set of accumulated motion estimates. Smaller frame increments suffer from less decorrelation-related inaccuracy but present greater potential for cumulative error because more estimates are used over any specific dimensional interval. We studied these effects using a combination of theoretical modeling, numerical simulation, and experiments. Components of diagonal motion due to the limitations of manual transducer movement were considered as the cause of decorrelation. The results were examined for four different angles of the diagonal motion and two different signal-to-noise ratio (SNR) values. These indicate that an optimal step size does exist and that this is dependent on many variables including SNR, angle of the diagonal motion, transducer geometry, lens focusing parameters, transducer operating frequency, and beamforming parameters. In practical experiments, we found that the optimal step size generally required using every available image frame rather than 'skipping' any intermediate frames.  相似文献   

5.
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r2 = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.  相似文献   

6.
邱媛媛  章东  龚秀芬 《声学技术》2009,28(3):245-248
研究基于超声功率谱的无创测温技术中AR滤波器对测温精度的影响。模拟了正常肝组织在超声换能器辐照下的散射回波信号,通过对加热前后组织回波信号的功率谱分析,使用AR模型计算频移,并反演温度分布。结果表明,当AR阶次为83~84、窗长为454~460时所反演的组织温度值与在频域求解非线性KZK方程和Pennes方程所得理论结果的偏差较小,约0.08oC。  相似文献   

7.
A widely used time-domain technique for motion or delay estimation between digitized ultrasound RF signals involves the maximization of a discrete pattern-matching function, usually the cross-correlation. To achieve sub-sample accuracy, the discrete pattern-matching function is interpolated using the values at the discrete maximizer and adjacent samples. In prior work, only 1-D fit, applied separately along the axial, lateral, and elevational axes, has been used to estimate the sub-sample motion in 1-D, 2-D, and 3-D. In this paper, we explore the use of 2-D and 3-D polynomial fitting for this purpose. We quantify the estimation error in noise-free simulations using Field II and experiments with a commercial ultrasound machine. In simulated 2-D translational motions, function fitting with quartic spline polynomials leads to maximum bias of 0.2% of the sample spacing in the axial direction and 0.4% of the sample spacing in the lateral direction, corresponding to 38 nm and 1.31 μm, respectively. The maximum standard deviations were approximately 1% of the sample spacing in both the axial and the lateral directions, corresponding to 193 nm axially and 4.43 μm laterally. In simulated 1% axial strain, the same function fitting leads to mean absolute displacement estimation errors of 255 nm in the axial direction and 4.77 μm in the lateral direction. In experiments with a linear array transducer, 2-D quartic spline fitting leads to maximum bias of 458 nm and 6.27 μm in the axial and the lateral directions, respectively. These results are more than one order of magnitude smaller than those obtained with separate 1-D fit when applied to the same data set. Simulations and experiments in 3-D yield similar results when comparing 3-D polynomial fitting with 1-D fitting along the axial, lateral, and elevational directions.  相似文献   

8.
A method for noninvasively estimating spatiotemporal temperature changes in samples using diagnostic ultrasound, and using these as inputs to a multipoint ultrasound phased array temperature controller, is presented in this paper. This method is based on a linear relationship between the apparent tissue echo pattern displacements and temperature, as seen along A-lines acquired with diagnostic ultrasound when the sample is heated by external heating fields. The proportionality constant between echo displacement and temperature is determined by the local change in speed of sound due to temperature and the linear coefficient of thermal expansion of the material. Accurate estimation of the displacements and proportionality constant yields accurate calibrated high-resolution (1 mm spatial, sub-°C) noninvasive sample temperature estimates. These are used as inputs to a multipoint temperature controller, capable of controlling ultrasound phased array treatments in real-time. Phantom and in vitro results show that the noninvasively estimated temperature values can effectively be used to control ultrasound hyperthermia treatments, almost replacing invasive thermocouple measurements. The mathematical background and assumptions of the noninvasive temperature estimator and the controller are presented in this paper, together with experimental results showing estimator and controller performance and limitations. To the best of our knowledge, this paper presents the first demonstration of real-time treatment control based entirely on noninvasive temperature estimates  相似文献   

9.
Ultrasound image guidance of interventional devices during minimally invasive surgery provides the clinician with improved soft tissue contrast while reducing ionizing radiation exposure. One problem with ultrasound image guidance is poor visualization of the device tip during the clinical procedure. We have described previously guidance of several interventional devices using a real-time 3-D (RT3-D) ultrasound system with 3-D color Doppler combined with the ColorMark technology. We then developed an analytical model for a vibrating needle to maximize the tip vibrations and improve the reliability and sensitivity of our technique. In this paper, we use the analytical model and improved radiofrequency (RF) and color Doppler filters to detect two different vibrating devices in water tank experiments as well as in an in vivo canine experiment. We performed water tank experiments with four different 3- D transducers: a 5 MHz transesophageal (TEE) probe, a 5 MHz transthoracic (TTE) probe, a 5 MHz intracardiac catheter (ICE) transducer, and a 2.5 MHz commercial TTE probe. Each transducer was used to scan an aortic graft suspended in the water tank. An atrial septal puncture needle and an endomyocardial biopsy forceps, each vibrating at 1.3 kHz, were inserted into the vascular graft and were tracked using 3-D color Doppler. Improved RF and wall filters increased the detected color Doppler sensitivity by 14 dB. In three simultaneous planes from the in vivo 3-D scan, we identified both the septal puncture needle and the biopsy forceps within the right atrium using the 2.5 MHz probe. A new display filter was used to suppress the unwanted flash artifact associated with physiological motion.  相似文献   

10.
Noninvasive measurement of mechanical properties, such as elasticity, of the arterial wall, is useful for diagnosis of atherosclerosis. The elasticity of the arterial wall can be estimated by combining measurement of displacement of the arterial wall with that of blood pressure. In general, the displacement of the arterial wall is estimated from the phase shift of radio frequency (RF) echoes between two consecutive frames using a correlation estimator with quadrature demodulated complex signals. Recently, digitized data of broadband RF echoes are available in modern diagnostic equipment. The Fourier transform can be used to estimate the phase of the RF echo at each frequency within the RF frequency bandwidth. Therefore, the phase shifts between RF echoes of two consecutive frames can be estimated at multiple frequencies. In this estimation, due to object displacement, the RF echo is time shifted in comparison with that of the previous frame. However, the position of the time window for the Fourier transform is not changed between two consecutive frames. This change in relative position between the RF echo and the time window has a strong influence on the estimation of the artery-wall displacement, resulting in error. To suppress this error, the phase shift should be estimated at the actual RF center frequency. In this paper, this error suppression was investigated through simulation experiments and in vivo experiments on the human carotid artery.  相似文献   

11.
12.
The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r(2) = 0.922 (p < 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r(2) > 0.790 (p < 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.  相似文献   

13.
A prototype sector-vortex phased-array applicator for ultrasound hyperthermia was constructed and acoustically evaluated. The array transducer consists of special lead-titanate ceramic elements of 16 sectors and two tracks attached on a element is driven by a complementary pair of power MOSFETs at 750 kHz. An annular focal field approximated by the Mth order Bessel function is theoretically predicted to be formed when the array elements are driven with a phase distribution that rotates M (相似文献   

14.
The ill‐conditioned inverse problem of estimating ultrasonic medium responses by deconvolution of RF signals is investigated. The primary difference between the proposed method and others is that the medium response function is assumed to be complex‐valued rather than restricted to being real‐valued. Derived from the complex medium model, complex Wiener filtering is presented, and a Hilbert transform related limitation to inverse filtering type methods is discussed. We introduce a nonparametric iterative algorithm, the least squares method with point count regularization (LSPC). The algorithm is successfully applied to simulated and experimental data and demonstrates the capability of recovering both the real and imaginary parts of the medium response. The simulation results indicate that the LSPC method can outperform Wiener filters and improve the resolution of the ultrasound system by factors as high as 3.7. Experimental results using a single element transducer and a conventional medical ultrasound system with a linear array transducer show that despite the errors in pulse estimation and the noise in the RF signals, excellent results can be obtained, demonstrating the stability and robustness of the algorithm. © 2006 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 15, 266–277, 2005  相似文献   

15.
Ultrasound phased arrays offer several advantages over single focused transducer technology, enabling electronically programmable synthesis of focal size and shape, as well as position. While phased arrays have been employed for medical diagnostic and therapeutic (hyperthermia) applications, there remain fundamental problems associated with their use for surgery. These problems stem largely from the small size of each array element dictated by the wavelength employed at surgical application frequencies (2-4 MHz), the array aperture size required for the desired focal characteristics, and the number of array elements and electronic drive channels required to provide RF energy to the entire array. The present work involves the theoretical and experimental examination of novel ultrasound phased arrays consisting of array elements larger than one wavelength, minimizing the number of elements in an aperture through a combination of geometric focusing, directive beams, and sparse random placement of array elements, for tissue ablation applications. A hexagonally packed array consisting of 108 8-mm-diameter circular elements mounted on a spherical shell was modeled theoretically and a prototype array was constructed to examine the feasibility of sparse random array configurations for focal surgery. A randomly selected subset of elements of the prototype test array (64 of 108 available channels) was driven at 2.1 MHz with a 64-channel digitally controlled RF drive system. The performance of the prototype array was evaluated by comparing field data obtained from theoretical modeling to that obtained experimentally via hydrophone scanning. The results of that comparison, along with total acoustic power measurements, suggest that the use of sparse random phased arrays for focal surgery is feasible, and that the nature of array packing is an important determinant to observed performance  相似文献   

16.
For application in a portable transdermal drug-delivery system, novel transducers have been designed to enhance insulin transmission across skin using ultrasound. Previous research has shown transdermal delivery of insulin across skin using commercial sonicators operating at 20 kHz with intensities ranging from 12.5 to 225 mW/cm/sup 2/. The goal of this research was to design and construct a small, lightweight transducer or array that could operate with a similar frequency and intensity range as a commercial sonicator used in previous transdermal ultrasound insulin experiments, but without the weight and mass of a sonicator probe. To obtain this intensity range, a cymbal transducer design was chosen because of its light, compact structure and low resonance frequency in water. To increase the spatial ultrasound field for drug delivery across skin, two arrays, each comprising of four cymbal transducers, were constructed. The first array, designated the standard array, used four cymbals transducer elements in parallel. A second array (named the stack array) used four cymbal transducers that used stacked piezoelectric discs to drive the titanium flextensional caps. Under similar driving conditions, the standard array produced intensities comparable to those achieved using a commercial sonicator.  相似文献   

17.
We describe a phase aberration correction method that uses dynamic ultrasound radiation force to harmonically vibrate an object using amplitude modulated continuous wave ultrasound. The phase of each element of an annular array transducer is adjusted to maximize the radiation force and obtain optimal focus of the ultrasound beam. The maximization of the radiation force is performed by monitoring the velocity of scatterers in the focus region. We present theory that shows focal optimization with radiation force has a well-behaved cost function. Experimental validation is shown by correction of manual defocusing of an annular array as well as correcting for a lens-shaped aberrator placed near the transducer. A Doppler laser vibrometer and a pulse-echo Doppler ultrasound method were used to monitor the velocity of a sphere used as a target for the transducer. By maximizing the radiation force-induced vibration of scatterers in the focal region, the resolution of the ultrasound beam can be recovered after aberration defocusing.  相似文献   

18.
A driving system has been designed for phased array ultrasound applicators. The system is designed to-operate in the bandwidth 1.2 to 1.8 MHz, with independent channel power control up to 60 W (8 bit resolution) for each array element. To reduce power variation between elements, the system utilizes switching regulators in a feedback loop to automatically adjust the DC supply of a class D/E power converter. This feedback reduces the RF electrical power variation from 20% to 1% into a 16 element array. DC-to-RF efficiencies close to 70% for all power levels eliminates the need for large heat sinks. In addition to power control, each channel may be phase shifted 360 degrees with a minimum of 8 bit resolution. To ensure proper operation while driving ultrasound arrays with varying element sizes, each RF driving channel implements phase feedback such that proper phase of the driving signal is produced either at the amplifier output before the matching circuitry or after the matching circuitry at the transducer face. This feedback has been experimentally shown to increase the focal intensities by 20 to 25% of two tested phased arrays without array calibration using a hydrophone.  相似文献   

19.
Temperature rise at the surface of an ultrasound transducer used for diagnostic imaging is an important factor in patient safety and regulatory compliance. This paper presents a semianalytical model that is derived from first principles of heat transfer and is simple enough to be implemented in a commercial ultrasound scanner for real-time forecasting of transducer surface temperature. For modeling purposes, one-dimensional array transducers radiating into still air are considered. Promising experimental verification data are shown and practical implementation benefits of the model for thermal design and management of ultrasonic array transducers are discussed. In particular, the reduction in the amount of thermal characterization data required, compared to empirical models, shows promise.  相似文献   

20.
A dedicated ultrasonic scanner for acquiring RF echoes backscattered from the trabecular bone was developed. The design of device is based on the goal of minimizing of custom electronics and computations executed solely on the main computer processor and the graphics card. The electronic encoder-digitizer module executing all of the transmission and reception functions is based on a single low-cost field programmable gate array (FPGA). The scanner is equipped with a mechanical sector-scan probe with a concave transducer with 50 mm focal length, center frequency of 1.5 MHz and 60% bandwidth at -6 dB. The example of femoral neck bone examination shows that the scanner can provide ultrasonic data from deeply located bones with the ultrasound penetrating the trabecular bone up to a depth of 20 mm. It is also shown that the RF echo data acquired with the scanner allow for the estimation of attenuation coefficient and frequency dependence of backscattering coefficient of trabecular bone. The values of the calculated parameters are in the range of corresponding in vitro data from the literature but their variation is relatively high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号