首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

2.
Both image quality and the accuracy of x-ray analysis invariable pressure scanning electron microscopes (VPSEMs) are often limited by the spread of the primary electronbeam due to scattering by the introduced gas. The degree of electron scattering depends partly on the atomic number Z of the gas, and the use of a low Z gas such as helium should reduce beam scattering and enhance image quality. Using anuncoated test sample of copper iron sulphide inclusions in calcium fluorite, we show that the reduction in beam scatter produced by helium is more than sufficient to compensate for its reduced efficiency of charge neutralisation. The relative insensitivity to pressure of x-ray measurements in a helium atmosphere compared with air, and the consequent ability to work over a wider range of working distances, pressures, and voltages, make helium potentially the gas of choice for many routine VPSEM applications.  相似文献   

3.
The evolution of hydrogen from many hydrated cryo‐preserved soft materials under electron irradiation in the transmission electron microscope can be observed at doses of the order of 1000 e nm?2 and above. Such hydrogen causes artefacts in conventional transmission electron microscope or scanning transmission electron microscopy (STEM) imaging as well as in analyses by electron energy‐loss spectroscopy. Here we show that the evolution of hydrogen depends on specimen thickness. Using wedge‐shaped specimens of frozen‐hydrated Nafion, a perfluorinated ionomer, saturated with the organic solvent DMMP together with both thin and thick sections of frozen‐hydrated porcine skin, we show that there is a thickness below which hydrogen evolution is not detected either by bubble observation in transmission electron microscope image mode or by spectroscopic analysis in STEM electron energy‐loss spectroscopy mode. We suggest that this effect is due to the diffusion of hydrogen, whose diffusivity remains significant even at liquid nitrogen temperature over the length scales and time scales relevant to transmission electron microscopy analysis of thin specimens. In short, we speculate that sufficient hydrogen can diffuse to the specimen surface in thin sections so that concentrations are too low for bubbling or for spectroscopic detection. Significantly, this finding indicates that higher electron doses can be used during the imaging of radiation‐sensitive hydrated soft materials and, consequently, higher spatial resolution can be achieved, if sufficiently thin specimens are used in order to avoid the evolution of hydrogen‐based artefacts.  相似文献   

4.
The application of color cathodoluminescent scanning electron microscopy (CCL-SEM) for qualitative luminescence analysis of cholesterol, bilirubin, and protein in human gallstones was demonstrated. Images of these deposits (cholesterol, bilirubin, and protein) were formed in real colors (blue—cholesterol, red, orange—bilirubin, yellow, green—protein) in accordance with the cathodoluminescent spectrum for each control material. The other method described for transmission electron microscopy (TEM) of ultra-thin sections provides more detailed characterization of the ultrastructure of cholesterol-containing regions and their spatial interrelations with bilirubin-containing regions. Using CCL-SEM combined with TEM permits the receipt of more complete information about the chemical composition and ultrastructure of gallstones and may lead to more effective understanding of the pathogenesis of cholesterol cholelithiasis.  相似文献   

5.
Using transmission electron microscopy (TEM) and scanning force microscopy (SFM) together, it was possible to verify important structural features of a nanostructured bulk material such as the kp‐morphology in an ABC triblock copolymer. By applying suitable imaging techniques during the SFM measurements it was possible to determine the morphology without additional manipulation steps in between. In comparison, TEM investigations on this type of material usually require selective staining procedures prior to the measurement. Also electron beam damage is often encountered during TEM measurements especially if components such as poly(methacrylates) are present. In contrast, SFM measurements can be assumed not to significantly change the phase dimensions of the components.  相似文献   

6.
7.
We describe a simple procedure to prepare cultured cells in suspension to analyse elemental content at the cellular level by electron probe X-ray microanalysis. Cells cultured in suspension were deposited onto polycarbonate tissue, culture plate well inserts, centrifuged at low g , washed to remove the extracellular medium, cryofixed and freeze-dried, and analysed in the scanning mode of a scanning electron microscope. We tested the effect of different washing solutions (150 m m ammonium acetate, 300 m m sucrose, and distilled water) on the elemental content of cultured cells in suspension. The results demonstrated that distilled water was the best washing solution to prepare cultured cells. In addition, the low Na content, high K content and high K/Na ratio of the cells indicated that this procedure, based on the centrifugation at low g followed by cryopreparation, constitutes a satisfactory method to prepare cultured cells in suspension. We also investigated the effects of different accelerating voltages on X-ray signal collection. The results showed that moderate accelerating voltages, i.e. 10–11 kV, should be used to analyse whole cells in the scanning mode of the scanning electron microscope. We show that this method of preparation makes it possible to prepare cryosections of the cultured cells, thus permitting analysis of the elemental content at the subcellular level, i.e. nucleus, cytoplasm and mitochondria, using a scanning transmission electron microscope.  相似文献   

8.
A new procedure to quantify the contrast in annular dark field images recorded without lattice resolution in a scanning transmission electron microscope is proposed. The method relies on the use of an in‐column energy filter prior to the annular dark field detector and the acquisition of a series of energy‐filtered images as a function of the inner detection angle. When the image contrast of an interface between two materials in such energy‐filtered annular dark field images is plotted vs. camera length and extrapolated to zero (i.e. infinite scattering angle), the contrast is shown to behave exactly as predicted by Rutherford's scattering formula (i.e. intensity scales ∝Z2). This can then be used to determine the local chemistry at and the effective chemical widths of interfaces or thin films without any additional spectroscopy method for calibration, provided the global chemical composition is known. As examples, the systems SiGe/Si and InGaAs/Ge are considered in detail.  相似文献   

9.
A simplified and standardized technique for close correlation between light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) is described. Perfusion and immersion fixed tissue specimens were embedded in Epon 812 and cut for conventional LM and TEM. The Epon blocks with remaining tissue were thereafter treated with epoxy solvent (ethanol-NaOH solution) for partial epoxy resin removal only (dissolving rate approx 33μm/h). The blocks with partially blotted tissue specimens were then critically point dried and gold coated for SEM. This method, in an easy way, allows repeated observations with LM, TEM and SEM with preserved fine structure and exact correlation. Since the technique is so simple and there is no need for special equipment the method can easily be adopted in all laboratories with basic SEM standards.  相似文献   

10.
Optimizing sample processing, reducing the duration of the preparation of specimen, and adjusting procedures to adhere to new health and safety regulations, are the current challenges of plant electron microscopists. To address these issues, plant processing protocols for TEM, combining the use of polyphenolic compounds as substitute for uranyl acetate with microwave technology are being developed. In the present work, we optimized microwave-assisted processing of different types of plant tissue for ultrastuctural and immunocytochemical studies. We also explored Oolong tea extract as alternative for uranyl acetate for the staining of plant samples. We obtained excellent preservation of cell ultrastructure when samples were embedded in epoxy resin, and of cell antigenicity, when embedded in LR-White resin. Furthermore, Oolong tea extract successfully replaced uranyl acetate as a counterstain on ultrathin sections, and for in block staining. These novel protocols reduce the time spent at the bench, and improve safety conditions for the investigator. The preservation of the cell components when following these approaches is of high quality. Altogether, they offer significant simplification of the procedures required for electron microscopy of plant ultrastructure.  相似文献   

11.
Following Na-hypochlorite digestion of lung tissue, mineral particles extracted in the chloroform layer were deposited directly on a pre-smoothed carbon planchet for combined scanning electron microscopy and X-ray energy dispersive spectrometry (SEM and XEDS). Total mineral particle counts were obtained, and detailed physical characteristics of the fibrous particles were documented at 600, 1,500, 4,500 and 9,000 x in three lungs without, and one lung with, histories of occupational exposure. This preparation method was simple, collected more than 99% of identifiable mineral particles in the chloroform layer, gave excellent object to background contrast without heavy metal coatings, and was suitable for XEDS. Comparable fibrous particles from the chloroform layer could also be studied by selected-area electron diffraction to complement the results of XEDS. By this method, we found particles or fibers larger than 0.1 μm were readily counted and measured at 4,500 x. At 600 x, ferruginous bodies were found to be more than twice in number than when sought for by light microscopy. It was determined that 4,500 x is the most efficient magnification to examine and diagnose this type of specimen. The present study illustrates the importance of determining the most efficient magnification to be utilized in particle counts.  相似文献   

12.
In arterioles of the lung the intravascular blood pressures are lower than in comparable vessels in the systemic circulation and the arteriole walls are thinner. Therefore, it is very difficult to distinguish between arterioles and venules of the same size using scanning electron microscopy. This study describes a novel application of latex microsphere perfusion and scanning electron microscopy which distinguishes between pulmonary arterioles and venules on the basis of endothelial cell morphology. Microspheres, 90 and 45 μm in diameter, were perfused into the arterial side of the pulmonary circulation of guinea-pig and rabbit lungs. Scanning electron microscopy of the arterioles on both sides of the lodged microspheres indicated that the endothelial cells are spindle shaped. In contrast, the endothelial cells of equal diameter venules are polygonal. Furthermore, the nuclei of the arteriolar endothelial cells were significantly (P = 0·019) narrower than those of endothelial cells in venules of equal diameter. Finally, it was observed that the differences between arteriole and venule endothelial cells persisted distally to the capillaries.  相似文献   

13.
An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly “on microscope”. This is exemplified by an application in which particle numbers were determined by the disector method.  相似文献   

14.
In a previous paper, a new technique was introduced to determine the chemistry of crystallographically well‐defined planar defects (such as straight interfaces, grain boundaries, twins, inversion or antiphase domain boundaries) in the presence of homogeneous solute segregation or selective doping. The technique is based on a linear least‐squares fit using series of analytical (electron energy‐loss or energy‐dispersive X‐ray) spectra acquired in a transmission electron microscope that is operated in nano‐probe mode with the planar defect centred edge‐on. First, additional notes on the use of proper k‐factors and determination of Gibbsian excess segregation are given in this note. Using simulated data sets, it is shown that the linear least‐squares fit improves both the accuracy and the robustness to noise beyond that obtainable by independently repeated measurements. It is then shown how the method originally developed for a stationary nano‐probe mode in transmission electron microscopy can be extended to a focused electron beam that scans a square region in scanning transmission electron microscopy. The necessary modifications to scan geometry and corresponding numerical evaluation are described, and three different practical implementations are proposed.  相似文献   

15.
The interaction of sodium cholate (SC) with phosphatidylcholine liposomes was studied by means of transmission electron microscopy (TEM), changes in the mean particle size (quasielastic light scattering, QELS) and in the static light scattering (SLS) of the system during liposome solubilization. A good correlation was found between the TEM diameter of particles and the mean hydrodynamic diameter (HD) determined by QELS. The intermediate aggregates resulting in this interaction were dependent on the SC concentration in the system. Thus, an initial vesicle growth occurred when the SC concentration in the system was 13.79 mol%. Additional SC amounts (41.17 mol% SC) led to the formation of the largest vesicles (HD 410 nm). Increasing SC amounts led to a slight fall in the vesicle diameter and in the SLS of the system. Thus, for 47.08 mol% SC, TEM images still showed the presence of vesicles albeit with traces of smaller structures and signs of vesicle fusion. When SC concentration exceeded 48 mol% an abrupt decrease in SLS occurred, the size curve starting to show a bimodal distribution. Thus, for 50 mol% SC a sharp distribution curve appeared at 52 nm indicating the formation of small particles and TEM images showed clear signs of vesicle disintegration with formation of tubular structures. The subsequent self organization of these tubular structures (54 mol% SC) led to the formation of open multilayered structures in coexistence with small particles. A gradual increase in the number of these small particles (mixed micelles) led to the complete solubilization of liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号