首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探明真空感应熔炼C-HRA-3镍基耐热合金脱氧和脱氮过程的热动力学规律,采用VIM-50型真空感应炉熔炼高纯合金原料,严格控制冶炼条件并取过程样检测,借助物理化学原理对实验结果进行分析。结果表明,精炼温度升高,C-HRA-3合金液中的平衡碳氧积增大而氮的平衡溶解度降低,真空度提高同时降低氧和氮的平衡溶解度。在实验冶炼条件(1 582℃,2.7 Pa)下,平衡[O]和[N]含量分别为3.73×10-4%和23.66×10-4%。随着精炼期延长,[O][N]含量逐渐降低,精炼后期时受Mg O坩埚分解影响[O]含量二次升高。C-HRA-3合金真空碳脱氧反应和脱氮反应的限制性环节分别为[O]在液相边界层中的扩散和[N]原子在界面处的化学反应,经计算[O]在液相边界层中的平均传质系数k[O]为2.68×10-3cm/s,脱氮反应为二级反应,反应表观速率常数为0.733 cm/s。  相似文献   

2.
研究了在真空感应炉中使用Cao坩埚熔炼镍基高温合金的脱氧效果,分析了加入0.02%C、0.5%Al对脱氧的影响。结果表明:采用CaO坩埚,选择合适的熔炼工艺及C、Al加入量,可使氧的含量降低到小于0.0006%。  相似文献   

3.
1 873 K下,Mo Si2电阻炉上用70 mm×100 mm Mg O坩埚,以SG45VCM钢为研究对象,对不同压力下(33、66、100 k Pa)气相渗氮过程及脱氮过程中氮的溶解行为进行了研究。分别建立了相应的热力学及动力学模型,并在实验室进行了验证。实验发现,氮分压越大溶解度越大,吹氮25 min后钢液中氮达到饱和,吹氩脱气40 min后,钢中氮的质量分数在100×10-6以下。工业试验表明,60 t LF+VD精炼炉底吹氮气后钢中增氮效果稳定。在LF精炼底吹氩气压力1~1.5 MPa、流量300~400 Nl/min条件下吹氮20~30 min后切换成氩气,VD保真空5~10 min的冶炼工艺条件下,可不添加任何氮化合金,即可生产满足氮含量要求的产品。  相似文献   

4.
《铸造》2019,(7)
研究了真空感应熔炼过程中不同熔化时间和精炼工艺对合金中氧和氮含量的影响。结果表明:镍基高温合金中氧和氮含量随着合金中铬含量增加呈增加趋势;熔化30 min时,合金中氧和氮含量分别降低36%和14%。随着精炼时间的延长,氮含量呈下降趋势,氧含量在精炼前30 min呈降低趋势,精炼40 min时氧含量反而增加。精炼过程中增加电磁搅拌后,提高了脱除氧氮速率,同时也提高了坩埚增氧速率。当精炼30 min时氧和氮脱除量比无电磁搅拌精炼工艺分别提高17%和22%;精炼时间达到40 min时,氮含量持续降低25%,而氧含量比无电磁搅拌精炼工艺增加12%。  相似文献   

5.
为进一步降低GH3625母合金中的氧、氮、硫含量,分别进行了高真空不加钙和高真空加钙2种工艺下的真空感应重熔实验,研究了高真空感应重熔精炼对合金成分和去除杂质元素氧、氮、硫的作用。结果表明:高真空感应重熔元素挥发烧损和富化均控制在标准成分范围;单纯高真空感应重熔时,合金中的氧通过C-O反应脱除,可脱氧至10μg/g,氮分压降低使氮含量脱至70μg/g,但在去硫方面无明显作用;高真空加0.5%钙作净化剂重熔时,Ca-O反应以及Ca与Al_2O_3坩埚内壁反应可实现深度脱氧,通过Ca-S反应使合金中硫含量显著降低,然而氮含量降低程度有限,其含量远高于氮在GH3625合金中的溶解度。采用Al_2O_3坩埚,选择高真空熔炼工艺及适量钙的加入,可使氧、氮、硫含量分别降低到6、60、9μg/g。  相似文献   

6.
通过真空感应熔炼炉冶炼La2-xSmxMg16Ni(x=0.1~0.4)合金.将Ni粉、石墨烯和La2-xSmxMg16Ni(x=0.1~0.4)合金粉球磨10h制备出La2-xSmxMg16Ni(x=0.1~0.4)+100%(质量分数)Ni+5%(质量分数)石墨烯的复合储氢合金.对复合储氢合金进行XRD分析及电化学...  相似文献   

7.
Al-Cu-Mg-(Ag,La)合金的显微组织与力学性能   总被引:1,自引:0,他引:1  
采用金相显微镜、扫描电镜、透射电镜与力学性能测试等方法,研究Ag1 La对Al-5.3Cu-0.8Mg(质量分数,%)合金的显微组织与时效特性的影响。结果表明:添加0.1La降低铸态Al-5.3Cu-0.8Mg-(0.6Ag)合金的晶粒尺寸;但并不能明显提高挤压态Al-5.3Cu-0.8Mg合金的时效硬化;添加0.6Ag能提高挤压态Al-5.3Cu-0.8Mg合金的时效硬化能力与抗拉强度,降低185℃时的峰时效时间。这是由于Ag的添加改变基体合金的时效析出相,合金的主要强化相由片状Ω相和少量θ相组成。同时,添加0.6Ag与0.1La有助于提高Al.5.3Cu-0.8Mg合金中口相的体积分数,最终使其力学性能得到进一步改善。  相似文献   

8.
精炼及破空对镍基合金中氧氮含量的影响   总被引:1,自引:1,他引:0  
采用真空感应法熔炼镍基合金,测定了精炼后合金的氧、氮含量,并观察合金中的夹杂情况.研究了精炼、破空处理对合金中氧、氮含量及夹杂的影响.结果表明:真空感应熔炼镍基高温合金在精炼的初始阶段,氧的脱除速率较大,主要通过氧与碳的还原反应生成CO气体进行;精炼后期氧元素的脱除速率有所降低.合金中氮元素的排除主要依赖高温和高真空作用,氮元素排除速率受CO的生成和排出影响.合金中的氧、氮含量与合金中的夹杂含量相关,精炼期间合金中Al2O3夹杂与高温液态金属中的氧元素之间存在动态平衡,随精炼时间延长合金中Al2O3夹杂分解,合金中夹杂含量及氧、氮含量均降低.  相似文献   

9.
张晓强  徐坚 《金属学报》2004,40(6):647-652
摘要利用X射线衍射,透射电子显微镜和差示扫描量热计分析表征了La55A125Cu10Ni5Co5合金及其添加W颗粒后高能球磨产物的结构与相转变,由数个金属间化合物构成的La55A125Cu10Ni5Co5合金经过机械研磨可转变为与熔体过冷形成的金属玻璃相类似的玻璃态合金,过冷液态温度区间的宽度△Tx可达到76K.合金与W颗粒(体积分数10%—30%)的混和物机械研磨后,形成W纳米颗粒弥散分布于La基玻璃态合金基体上的复合材料,随着W含量的增加,基体合金的玻璃转变温度Tg和晶化起始温度Tx1均提高,同时△Tx增大,含30%W的复合材料,基体玻璃态合金的△Tx可达到92K。  相似文献   

10.
针对万吨级铁基非晶合金原料供给的重大难题,对底吹电渣感应炉和真空感应钢包精炼炉进行了研究,结果表明:采用2台2t底吹电渣感应炉进行熔炼和一次精炼,1台4t真空感应钢包精炼炉进行二次精炼,能够保证铁基非晶合金的成分精度,而且其产能能够满足万吨级铁基非晶合金生产需要。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号