首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
近γ组织TiAl合金的超塑性   总被引:4,自引:0,他引:4  
研究了近γ组织TiAl合金在温度为950℃~1075℃,应变速率为2×10-4s-1~8×10-5s-1的超塑性行为。结果表明,该合金在上述试验条件下表现出优越的超塑性,拉伸延伸率最高达到570%。在温度高于1000℃及应变速率不大于17×10-4s-1时,应变速率敏感指数均高于05,最大值接近08。该合金超塑性变形的表观激活能为302kJmol,超塑性变形机制被认为是晶内滑移协调晶界滑动。  相似文献   

2.
研究了Al67Ti25Mn8金属间化合物在高温不同应变速率条件下的拉伸力学行为.结果表明在3.34×10-5-6.68×10-4s-1范围,随着应变速率的降低,材料的屈服强度显著下降,而拉伸塑性明显升高,塑性最高可达到21%;在低应变速率区高拉伸塑性的获得是由于材料在高温变形过程中发生的动态回复和动态再结晶所致;在高温拉伸时Al67Ti25Mn8金属间化合物是以沿晶方式发生断裂在较高应变速率下材料的低塑性沿晶断裂表明Al67Ti25Mn8的晶界结合强度仍较弱  相似文献   

3.
试验研究了供应态2B70铝合金经普通退火处理后在不同变形工艺下的超塑性变化规律.结果表明:采用3.3×10-4 s-1的初始应变速率,在360℃~490℃的拉伸温度范围内2B70铝合金具有一定的超塑性.450℃为合金的最佳超塑性拉伸温度,3.3×10-4 s-1为最佳初始应变速率,在最佳超塑性条件下合金的最大伸长率达到193.3%,流动应力为13.94 MPa.在超塑性拉伸过程中,由于不断发生动态回复及再结晶,晶粒趋于明显细化和等轴化.合金的超塑性变形是以晶界滑移为主的变形机制,在较低拉伸温度及较高初始应变速率下晶界滑移痕迹较少,表现出明显的晶间断裂特征.  相似文献   

4.
针对GH4169合金进行了不同变形工艺的超塑性拉伸和热处理试验,研究变形及热处理对合金塑性的影响。结果表明,锻态合金分别经过890℃×10h+950℃×1h和890℃×10h+950℃×3h的退火热处理后,发现延长第二次退火时间可有效细化晶粒;利用最大应变速率敏感指数法(最大m值法)进行不同温度的超塑性拉伸试验,在950℃时合金的伸长率最佳;延长第二次退火时间可显著提高试样的伸长率;采用基于最大m值法的应变诱发超塑性法对合金进行超塑性拉伸试验,可知预变形拉伸后,保温20min后其伸长率最佳;在890℃×10h+950℃×3h热处理后合金伸长率达566%,较单纯m值法拉伸后合金的伸长率显著提高。  相似文献   

5.
工业用镁合金板材的超塑性能   总被引:3,自引:0,他引:3  
对供应态工业用MB8镁合金进行了正交超塑性拉伸试验,结果表明晶粒度约为6.8μm的MB8镁合金板料,在变形温度为400℃、初始应变速率为0.22~5.56×10-6s-1的变形条件下,最大延伸率为312%,流动应力不大于20MPa。  相似文献   

6.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

7.
以热机械处理获得的超细晶1.6%C超高碳钢为研究对象,借助电致超塑性压缩试验研究了电场强度和初始应变速率对超高碳钢超塑性的影响,并探讨了其与40Cr钢电致超塑性焊接的可行性.实验结果表明,在压缩温度780℃、初始应变速率(0.5-5.0)×10-4 s-1,试样接正极环状电极接负极条件下,超高碳钢的应力应变曲线呈现出明显的超塑性压缩流变特征,其应变速率敏感性指数为0.46;当电场强度为3 kV/cm时,其超塑稳态流变应力降低10%以上.在焊接温度780℃、初始应变速率1.5×10-4 s-1、预压应力56.6MPa、电场强度3 kV/cm条件下,超高碳钢与40Cr钢实现了电致超塑性焊接,其接头拉伸强度达到533 MPa,比不加电场时增加15%.  相似文献   

8.
Ti-24Al-14Nb-3V-0.5Mo合金的超塑性   总被引:2,自引:0,他引:2  
研究了温度及应变速率对Ti-24Al-14Nb-3V-0.5Mo(at.-%)合金超塑性能的影响.试验结果表明,在980℃,3.5×10~(-4)s~(-1)的最佳超塑变形条件下,合金显示出较高的超塑性;应变速率敏感性指数m为0.69,拉伸延伸率El.为818%.根据其细小的α_2+β_0两相组织和等温拉伸的试验方法,确定合金的超塑性属于细晶组织超塑性.在超塑变形过程中,合金无空洞产生,显微组织发生动态粗化.  相似文献   

9.
本文研究了国产工业纯铝的超塑性。纯度为99.5%的铝试样,经500℃退火3小时,在300~500℃范围内进行拉伸试验,350℃和初始应变速率ε_0=8×10~(-2)1/分时具有最大延伸率。温度为350℃时,用初始应变速率ε_0=8×10~(-3)1/分到6×10~(-2)1/分不同的应变速率进行拉伸试验,初始应变速率为8×10~(-2)/1分时延伸率出现峰值。另一方面,晶粒尺寸较小试样的延伸率小于晶粒尺寸大的试样的延伸率。在拉伸过程中晶粒长大、晶粒拉长以及在拉伸过程中发生再结晶。最大的应变速率敏感性指数m=0.3,最大延伸率为164%。说明工业纯铝在一定的温度和应变速率时具有轻微的超塑性。  相似文献   

10.
在电子万能拉伸试验机上对TB8钛合金进行了恒应变速率超塑性拉伸试验(变形温度为720~880℃,应变速率为0.000 1~0.01s~(-1)),研究了拉伸流变行为,计算了超塑性拉伸变形激活能和相应的应力指数,建立了TB8钛合金应力-应变本构模型。结果表明,在同一应变速率下,流变应力随变形温度的增加而减少,同一变形温度下,流变应力随应变速率的增加而增加。在变形温度为840℃,应变速率为10~(-4) s~(-1),合金的伸长率最大,为356%;超塑性拉伸变形激活能和应力指数分别为251.25kJ/mol、2.389 5。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号