首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this paper, we propose a logic of argumentation for the specification and verification (LA4SV) of requirements on Dung??s abstract argumentation frameworks. We distinguish three kinds of decision problems for argumentation verification, called extension verification, framework verification, and specification verification respectively. For example, given a political requirement like ??if the argument to increase taxes is accepted, then the argument to increase services must be accepted too,?? we can either verify an extension of acceptable arguments, or all extensions of an argumentation framework, or all extensions of all argumentation frameworks satisfying a framework specification. We introduce the logic of argumentation verification to specify such requirements, and we represent the three verification problems of argumentation as model checking and theorem proving properties of the logic. Moreover, we recast the logic of argumentation verification in a modal framework, in order to express multiple extensions, and properties like transitivity and reflexivity of the attack relation. Finally, we introduce a logic of meta-argumentation where abstract argumentation is used to reason about abstract argumentation itself. We define the logic of meta-argumentation using the fibring methodology in such a way to represent attack relations not only among arguments but also among attacks. We show how to use this logic to verify the requirements of argumentation frameworks where higher-order attacks are allowed [A preliminary version of the logic of argumentation compliance was called the logic of abstract argumentation?(2005).]  相似文献   

4.
5.
6.
We investigate how to take advantage of the particular features of the calculus of inductive constructions in the framework of hardware verification. First, we emphasize in a short case study the use of dependent types and of the constructive aspect of the logic for specifying and synthesizing combinatorial circuits. Then, co-inductive types are introduced to model the temporal aspects of sequential synchronous devices. Moore and Mealy automata are co-inductively axiomatized and are used to represent uniformly both the structures and the behaviors of the circuits. This leads to clear, general and elegant proof processes as is illustrated on the example of a realistic circuit: the ATM Switch Fabric. All the proofs are carried out using Coq.Accepted in revised form 29 February 2004 by C.B. Jones  相似文献   

7.
8.
9.
利用人工智能最新研究成果--约束逻辑编程对Verilog描述进行谓词抽象,并与目前基于SAT的方法进行了比较.首先通过符号模拟建立Verilog的形式化模型,然后结合要抽象的谓词,将谓词抽象问题转化为约束逻辑编程问题并进行求解.该方法的优点是在计算抽象系统时,不需要像基于SAT的方法那样将字级约束打散成位级约束,求解效率显著提高;提供了一个统一的框架用于描述各种约束.实验结果表明,与基于SAT的抽象技术相比,基于约束逻辑编程的抽象方法的求解速度有显著提高.  相似文献   

10.
11.
针对计算机系统设计的正确性问题,研究了一种在测试空间上完备的形式化方法,探讨了硬件系统在定理证明器HOL4中进行形式化验证的一般方法,其中包括如何采用高阶逻辑形式化描述系统的实现与规范,以及在HOL4中证明目标的一般过程.同时,以乘法器为实例,提出一种功能分解法对需要分析的电路进行形式化建模,并对模型的性质在HOL4中进行推理与验证,从而证明了乘法器电路设计的模型满足所提取的性质.  相似文献   

12.
A temporal-constraint logic programming framework for the specification and automatic verification and synthesis of assembly sequences is developed. The implemented tool is based on the formulated and derived precedence properties for a general mechanical assembly. This tool, called the Mechanical Assembly Sequence Satisfiability Checker (MASS-C), supports the use of a subset of temporal logic for assembly constraint specification. MASS-C provides the logic programming framework by which the designer can be relieved of the tedium of finding the assembly sequences, and the assembly sequence planning process manifests itself in the implicit modelling of assembly sequences by acquiring and formulating the set of correct and complete assembly constraints as a logic program. MASS-C implements a class of temporal expressions as predicates for logic programming of assembly constraints. It provides facilities to either verify an assembly sequence or synthesise all assembly sequences that satisfy the specified constraints composed as a logic program. Two examples illustrate the use of MASS-C for such verification and synthesis.  相似文献   

13.
14.
15.
A condition system is a form of Petri net that interacts with other condition systems and the environment via state-based signals called conditions. The condition language framework has been used in previous papers to characterize the input/output behavior of such interacting systems, as well as to specify desired control behavior among other things. In this paper, we show that condition sequences (the specification) and condition systems (the model of the system) have an equivalent structure in the computation tree logic (CTL) framework. The primary goals of this work are to be able to utilize existing tools for program verification for our systems, and to make our work more accessible to the temporal logic community.  相似文献   

16.
17.
18.
随着现代社会计算机化程度的提高,与计算机相关的各种系统故障足以造成巨大的经济损失.机械化定理证明能够建立更为严格的正确性,从而奠定系统的高可信性.针对机械化定理证明的逻辑基础和关键技术,详细剖析了一阶逻辑和基于消解的证明技术、自然演绎和类型化的λ演算、3种编程逻辑、基于高阶逻辑的硬件验证技术、程序构造和求精技术之间的联系和发展变迁,其中,3种编程逻辑包括一阶编程逻辑及变体、Floyd-Hoare逻辑和可计算函数逻辑.然后分析、比较了各类主流证明助手的设计特点,阐述了几个具有代表性的证明助手的开发和实现.接下来对它们在数学、编译器验证、操作系统微内核验证、电路设计验证等领域的应用成果进行了细致的分析.最后,对机械化定理证明进行了总结,并提出面临的挑战和未来研究方向.  相似文献   

19.
Hybrid     
Combining higher-order abstract syntax and (co)-induction in a logical framework is well known to be problematic. We describe the theory and the practice of a tool called Hybrid, within Isabelle/HOL and Coq, which aims to address many of these difficulties. It allows object logics to be represented using higher-order abstract syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of λ-terms providing a definitional layer that allows the user to represent object languages using higher-order abstract syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use Hybrid in a multi-level reasoning fashion, similar in spirit to other systems such as Twelf and Abella. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of non-stratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuation-machine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly more complex object logic whose encoding is elegantly expressed using features of the new specification logic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号