首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鉴于目前国内柴油产品市场过于饱和且加氢精制柴油经济效益较差,提出了蜡油加氢裂化装置掺炼加氢精制柴油的加工方案。该加工方案拓宽了蜡油加氢裂化装置原料油范围,增加了装置生产方案的灵活性,充分利用了装置加工能力,提高了装置运行效益,降低了综合能耗。工业生产结果表明,蜡油加氢裂化装置所掺炼的精制柴油经反应转化为重石脑油及喷气燃料等高附加值产品,可大幅提高经济效益。  相似文献   

2.
研究了蜡油加氢裂化装置掺炼催化裂化柴油(简称催化柴油)对反应性能的影响。掺炼不同馏程催化柴油的研究结果表明:在相同反应条件下,随着催化柴油馏程的增加(馏程低的称为轻催柴,馏程高的称为重催柴),轻石脑油与重石脑油收率逐渐减小,重石脑油芳潜逐渐增大,喷气燃料收率先增大后减小,喷气燃料烟点逐渐降低,大于282 ℃尾油收率先减小后增大,尾油BMCI值逐渐升高;在相同反应条件下,随着轻催柴掺炼比例的增加,喷气燃料和重石脑油产率减小,重石脑油芳潜增大,喷气燃料烟点降低,大于282 ℃尾油的BMCI值逐渐增加;当轻催柴掺炼比例为30%时,尾油BMCI值为13.31,仍可作为优质的蒸汽裂解制乙烯的原料;在相同尾油收率下,随着轻催柴掺炼比例的增加,加氢裂化反应氢耗增加,轻石脑油、重石脑油收率降低,喷气燃料收率增加,重石脑油芳潜增大,喷气燃料烟点降低,尾油BMCI值增加。  相似文献   

3.
为了拓宽加氢裂化装置的原料来源,中国石化齐鲁分公司1400kt/a加氢裂化装置在加强对原料的过滤,提高加氢精制深度,充分利用高抗氮裂化催化剂性能等现有条件的情况下,进行了提高掺炼焦化蜡油比例的工业试验,掺炼率最大可至25%。当掺炼率为20%时,精制反应器床层的总温升比单炼VGO时上升了20℃,平均反应温度实际上升了6.1℃,氢耗从202.8m^3/t上升到236.5m^3/t。掺炼焦化蜡油后对装置的平稳操作和产品质量、产品分布无不良影响。  相似文献   

4.
为解决FCC柴油后路问题,中国石油化工股份有限公司茂名分公司对1号加氢裂化装置进行了改造,加工FCC柴油生产高辛烷值汽油。标定结果表明,通过更换催化剂,采用部分循环的操作方式,在一定的氢分压、精制反应平均温度为394℃、裂化反应平均温度为400℃的条件下,可生产辛烷值88的汽油馏分,反应的转化率为40.4%,汽油的收率为26.53%,装置能耗为1 582.97 MJ/t;将精制反应温度降到392℃,裂化反应温度提高到401℃时,汽油馏分的辛烷值可提高到91,反应转化率为39.1%,汽油收率24.42%,装置能耗为1 590.07 MJ/t。同时,对装置运行存在的问题进行了分析,需要通过调整反应系统压力以及循环氢纯度来优化装置的运行。  相似文献   

5.
加氢裂化装置掺炼辽河原油焦化蜡油技术分析   总被引:1,自引:0,他引:1  
通过分析加氢裂化装置掺炼焦化蜡油的原料性质,发现掺炼后原料(CGO,VGO)的密度、C,不溶物及氮含量高于设计值,而硫含量低于设计值,这样的原料不利于精制和裂化反应.掺炼CGO后主要操作参数方面:精制床层平均温度增加8℃,总温升增加5℃;加氢裂化床层平均温度增加10℃,总温升没有变化;装置C5+液收高于掺炼之前;尾油外甩增加.装置运行方面:高氮低硫原料导致精制反应器和裂化反应器的操作条件出现矛盾;循环氢中氨含量过高对裂化剂活性有强烈的抑制作用,并且热高分气换热器结盐速度明显加快.针对这些问题提出了相对应解决措施:确定合理原料掺炼比例;尽可能避免选择高氮低硫原料;增上装置洗盐技术设施.  相似文献   

6.
蜡油加氢装置加氢处理催化裂化柴油(催柴)和蜡油的混合原料,在催柴掺炼比27.23%、反应温度363 ℃、反应器入口氢分压9.5 MPa、反应器入口氢油体积比493、主剂体积空速1.35 h-1的工艺条件下,催柴密度从0.983 6 g/cm3降至0.918 5 g/cm3,氢质量分数从8.34%提高到10.92%,氮质量分数从633 μg/g降至67 μg/g,单环芳烃质量分数从15.9%升至51.6%,多环芳烃质量分数从77.4%降至18.7%,催柴性质改善显著。加氢后的催柴与精制蜡油一起进催化裂化装置,加氢催柴在催化裂化装置的转化率达48.15%,汽油产率达40.41%。  相似文献   

7.
加工环烷基蜡油的中海石油宁波大榭石化有限公司2.1 Mt/a加氢裂化装置在运行过程中出现系统压降快速上升的情况,被迫停工。除了精制反应器压降外,系统压降主要发生在高压换热器部位。高压换热器入口分配器内部及精制反应器保护剂床层结垢篮及其上部积累了大量的白色垢物,堵塞了高压换热器入口分配器,导致高压换热器压降快速增大。该白色垢物为环四磷酸铁,是由装置进料中所含的铁元素与装置上游常减压蒸馏装置所添加的高温缓蚀剂中的含磷化合物反应所生成。提出控制进料中磷质量分数不超过0.5 μg/g,以及常减压蒸馏装置采用无磷缓蚀剂或升级设备材料等应对措施  相似文献   

8.
介绍了中国石油化工股份有限公司广州分公司加氢裂化装置掺炼重油催化裂化柴油的应用情况。应用结果表明,装置运行正常,加氢裂化柴油十六烷值从掺炼前的65下降到掺炼后的60左右,同时喷气燃料烟点略有下降,装置能耗下降。通过加氢裂化工艺可以大幅改善劣质催化裂化柴油的质量。  相似文献   

9.
为提高催化裂化柴油(简称催化柴油)品质及优化全厂物料平衡,中海油惠州石化有限公司在3.6 Mt/a煤柴油中压加氢裂化装置进行了大比例掺炼劣质催化裂化柴油的实践。结果表明:在不改变装置结构及催化剂已运转8年半的条件下,催化柴油掺炼比例(w)达21%,装置整体运行平稳;装置综合能耗由777.121 MJ/t增加至952.315 MJ/t;重石脑油、喷气燃料和柴油产品质量合格;与不掺炼催化柴油相比,掺炼21%催化柴油后,喷气燃料的收率降低11.99百分点,烟点降低4.6 mm,密度(20 ℃)增大12.8 kg/m3,芳烃体积分数增加8百分点;与原料相比,柴油产品的十六烷值提高16.4个单位,但与掺炼前相比,十六烷值降低5.5个单位,收率增加8.29百分点。催化柴油掺炼比例提高后,国V标准柴油的比例提高,满足了柴油产品质量升级要求,同时为大型炼油厂优化全厂物料平衡提供了新途径。  相似文献   

10.
介绍了国内某石化公司3.4 Mt/a重油催化裂化装置掺炼蜡油加氢裂化尾油的工业应用情况。结果表明:与空白标定相比,掺炼标定的产品分布及性质较好,柴油和油浆收率下降,干气和焦炭收率小幅降低,汽油和液化石油气的收率分别提高至44.71%,20.07%,轻质油和总液体收率分别提高1.15,3.69个百分点;汽油的烯烃体积分数由27.7%降低至21.3%,硫传递系数由2.95%降低至2.08%,研究法辛烷值降低了0.3个单位;柴油的密度增加、十六烷值降低;液化石油气的氢转移反应指数由1.36提高至1.61,干气的裂解系数由1.45提高至1.88。  相似文献   

11.
煤柴油加氢裂化装置掺炼重凝析油工艺研究   总被引:1,自引:0,他引:1  
在中型加氢裂化试验装置上考察了原料中重凝析油掺炼比例对产品分布和产品质量的影响,同时考察了反应温度、体积空速对产品性质的影响。试验结果表明,中海石油炼油化工有限责任公司惠州炼油分公司煤柴油加氢裂化装置掺炼重凝析油可行,随着重凝析油掺入比例增加,工艺参数趋于缓和。适宜的重凝析油掺入比例为8%,煤油馏分烟点可达25 mm以上,冰点小于-60℃,可满足3号喷气燃料要求;柴油馏分硫含量小于10μg/g,十六烷值为57.9,多环芳烃含量为0,可以满足欧V柴油排放标准要求。  相似文献   

12.
介绍了中国石油天然气股份有限公司四川石化分公司(四川石化)加氢裂化装置掺炼催化裂化柴油(催化柴油)与常三线柴油的情况。选择纯直馏蜡油、掺炼常三线、掺炼催化柴油、掺炼常三线与催化柴油等4种典型工况分析掺炼催化柴油与常三线对原料性质、主要操作条件以及产品性质与收率的影响。结果表明,掺炼催化柴油,在一定程度上抑制了裂化剂反应活性,使重石脑油收率降低,喷气燃料与柴油收率增加,而且还加快催化剂失活速率。通过同时掺炼催化柴油与常三线,减缓催化剂失活速率,并且使重石脑油与喷气燃料收率提高4.42百分点,柴油收率降低1.75百分点,既降低了柴汽比又获取了高附加值产品,增加了企业的经济效益。  相似文献   

13.
介绍了中国石化海南炼油化工有限公司加氢裂化装置掺炼催化裂化柴油运行情况,运行分析显示,加氢裂化装置掺炼一定比例的催化裂化柴油是可行的。在控制相同尾油量的操作方案下,航煤收率小幅增加,柴油收率略有降低,其余馏分收率变化不大,劣质的催化裂化柴油转化成附加值较高的航空煤油、车用柴油和石脑油组分。掺炼对反应部分的操作影响较大,精制反应器总温升增加7℃以上,裂化反应器总温升增加2.7℃以上,总氢耗增加30Nm3.t-1左右,对产品的质量也带来一定变化和影响,综合能耗增加。  相似文献   

14.
在实验室研究基础上,确定了蒸馏装置在生产沥青期间小流量掺炼FCC油浆方案,总结了多年的实际运行情况。结果显示:掺炼油浆能够实现油浆增值;装置长期掺炼油浆,初期影响不明显,末期减压填料结焦、堵塞严重,减压塔进料段残压上升到6.69 kPa,沥青残留针入度比逐渐卡边,时常出现不合格;装置掺炼油浆,装置燃料气消耗呈现逐年上升趋势;换热器结焦堵塞严重,仪表热电偶存在磨损泄漏风险。  相似文献   

15.
16.
福建联合石油化工有限公司加氢处理装置以重质减压蜡油和脱沥青油为主要原料,生产低硫蜡油作为催化裂化装置优质进料。该公司充分利用原有的加氢处理装置将FCC柴油进行改质后,进催化裂化装置生产富含芳烃的汽油组分。因加工FCC柴油,装置出现了反应器入口氢油比低、氢耗上升、循环量不足以及汽油中苯含量上升等问题。对此提出了相应的对策:降低反应器入口床层温度提高反应器入口氢油比;控制换热器铵盐结垢、适当提高脱硫深度以提高循环氢量。  相似文献   

17.
介绍了中国石油天然气股份有限公司大庆石化分公司炼油厂1.2 Mt/a加氢裂化装置概况,对比分析了加氢裂化装置掺炼焦化蜡油(CGO)对原料性质、产品性质及收率、工艺操作条件及能耗的影响。标定结果表明,掺炼200 t/d CGO后,原料油密度、干点、氮含量均有所增加;装置运行平稳,精制及裂化反应器平均温度需分别提高4.0℃和3.5℃以维持相同转化率;各产品质量合格,石脑油收率变化不大,柴油十六烷值及中间馏分油收率略有下降,尾油BMCI值升高2.1个单位,气体和尾油收率分别增加0.26百分点;装置综合能耗降低25.5 MJ/t。表明在加氢裂化原料中适当掺炼CGO在技术上是可行的,需在掺炼CGO的经济效益和催化剂运行周期之间寻找最佳平衡点。最后针对掺炼CGO出现的问题提出了解决措施。  相似文献   

18.
19.
为评估煤油柴油加氢裂化装置大比例掺炼催化柴油方案的可行性,利用基于Petro-SIM模拟软件所建立的加氢裂化装置全流程模型,从混合进料性质、氢气及循环氢系统负荷、催化剂床层温度分布、产品性质等方面对加工方案进行了整体模拟预测,结果表明随着催化柴油掺炼比例的升高,混合进料硫、氮含量和密度以近似线性规律增加,装置氢气及循环氢系统负荷、催化剂床层温度、温升均大幅增加,主要产品性质仍可满足指标要求。工业实践表明,催化柴油掺炼比例为20%时与掺炼催化柴油前工况相比,精制反应器(R101)和裂化反应器(R102)温度分别升高12. 5℃和8. 5℃,达到361. 3℃和362. 0℃,氢气耗量由65. 2 dam~3/h大幅增加至100. 3 dam~3/h,同时循环氢量由370. 6 dam~3/h增加至474. 0 dam~3/h,满足装置压缩机负荷要求。基于Petro-SIM的全流程模型对反应器平均温度模拟结果最大误差仅0. 44%,氢气、循环氢系统负荷以及产品性质模拟误差基本在5. 0%以内。  相似文献   

20.
焦化蜡油的缓和加氢裂化尾油是催化裂化的优质原料.实验表明,单炼或掺炼这种尾油都能得到较高的轻油收率和较好的产品分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号