首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
采用分隔壁精馏塔分离裂解汽油。建立了分隔壁精馏塔小试装置,该装置主塔的理论板数57块,副塔的理论板数为16块。考察了回流比、液体分配比和侧线采出量对分离效果的影响,同时用Aspen Plus 软件对分隔壁精馏塔进行模拟。结果表明,最佳操作条件为进料速率4.7 kg/h、塔顶出料速率0.84 kg/h、侧线采出速率3.0 kg/h、液体分配比3、回流比5.5。在此条件下,塔顶C5的质量分数达到99.60%,侧线C6~C8的质量分数达到99.76%,实验结果与模拟结果基本一致。采用分隔壁精馏塔比常规分离流程可使再沸器能耗降低20.8 %。  相似文献   

2.
分隔壁精馏塔分离三组分烷烃混合物的研究   总被引:2,自引:2,他引:0  
利用自制的分隔壁精馏塔小试装置对正己烷、正庚烷和辛烷三组分混合物的分离进行了实验。考察了进入侧线采出段的液体流量与进入预分离段的液体流量之比(简称液体分配比)、进料位置和出料位置对分离效果的影响;并与带侧线采出的精馏塔进行比较。实验结果表明,在液体分配比为1、进料位置为分隔壁中间、出料位置为分隔壁中间时,塔顶馏出物中正己烷的质量分数可达99.72%,侧线采出物中正庚烷的质量分数可达95.48%,塔釜液中辛烷的质量分数可达96.80%;采用分隔壁精馏塔比常规带侧线精馏塔可得到更高纯度的中间产物和塔釜产物;采用Aspen Plus流程软件对分隔壁精馏塔模拟的结果与实验结果基本一致。  相似文献   

3.
研究了分隔壁精馏塔在分离苯和乙烯烷基化产物中的应用。采用Aspen Plus的Petlyuk模块对分隔壁精馏塔进行了模拟计算。首先采用等效三塔简捷模型计算分隔壁精馏塔的分壁段、主塔塔板数等参数,以此为基础,采用Petlyuk模型对分隔壁精馏塔进行严格计算,再采用Aspen的模型分析工具确定塔的最佳工艺参数。结果表明,对于乙烯和苯烷基化产物体系,采用分隔壁精馏塔分离的最佳参数为主塔理论塔板数58块、预分段理论塔板数25块,上、下端互联位置分别在15板、40板,进料位置在第10块板(预分段),侧线乙苯抽出位置在第24块板(基于主塔),主塔回流比13,互联物流液体流量500 kmol/h,气体流量950 kmol/h。在此参数下,计算得到的侧线采出乙苯质量分数为9992%,满足乙苯产品的纯度要求。  相似文献   

4.
分隔壁精馏塔分离裂解汽油的模拟   总被引:1,自引:0,他引:1  
提出了分离裂解汽油新工艺,用分隔壁精馏塔(DWC)替代传统工艺中的三个精馏塔。利用AspenPlus模拟软件对DWC工艺和传统精馏工艺进行了模拟,考察了回流比、分配比、侧线采出量等工艺条件对分离效果的影响,并对两种工艺进行了比较。模拟结果表明,DWC的最佳操作条件为:主塔理论板数为56块,副塔为12块板,回流比为7,液体分配比为3,气体分配比为2,同时需严格控制侧线采出流量。在此操作条件下,分隔壁精馏工艺比传统三塔精馏工艺节能26.89%。  相似文献   

5.
利用分隔壁精馏塔实验室小试装置对苯、甲苯、二甲苯三组分芳烃混合物的分离进行了初步探索,考察了进料组成、进料速度、回流比、分配比等因素对分离效果的影响。结果表明,当分隔壁精馏塔进料中甲苯的体积分数为60%、苯和二甲苯的含量相当、进料速度为1.1mL/min、分配比为1:2、回流比为6:1时,分离效果最佳,此时塔顶采出苯的质量分数达到94.9%,侧线采出甲苯的质量分数为96.4%,塔釜中不含轻组分。  相似文献   

6.
改进了乙烯装置顺序分离流程,将传统流程中的脱甲烷塔和脱乙烷塔集成为1个分壁精馏塔,实现C1、C2和C3+的分离,再分别经脱丙烷塔、炔烃选择加氢器、乙烯精馏塔、丙烯精馏塔等,得到聚合级的乙烯和丙烯产品。利用Aspen对分壁精馏塔进行等效模拟,并对新工艺进行全流程模拟。模拟结果表明,分壁精馏塔塔板数为43,进料在第17块板,侧线采出在第13块板,回流比2.6,隔板处于第7到第29块板之间,塔顶采出物中C1质量分数为99.94%,中间侧线采出物中C2的质量分数为99.97%,塔底釜液中C3+的质量分数为100%,实现了C1、C2和C3+的清晰分割。采用该新工艺可以得到质量分数分别为99.97%和99.98%的聚合级乙烯和丙烯产品,因此,建立的基于分壁精馏塔的乙烯装置顺序分离新工艺在技术上可行。  相似文献   

7.
提出了一种新的单塔萃取精馏精制芳烃和非芳烃的新工艺,新工艺采用分隔壁萃取精馏塔替代常规萃取精馏流程的萃取精馏塔及溶剂回收塔,不仅节省了设备投资,而且降低了总能耗。利用ASPENPLUS模拟软件,对分隔壁萃取精馏塔及常规萃取流程进行了模拟,考察了溶剂比、回流比及分配比对分隔壁萃取精馏塔的影响,并对两种流程进行了比较,结果表明,分隔壁萃取精馏塔的最佳操作条件为:塔板数为41块,侧线精馏段的板数为10块,回流比为1,溶剂比为3.5,分配比为1.25。在此条件下,分隔壁萃取精馏塔比常规的两塔萃取精馏流程节能25.2%。  相似文献   

8.
采用AspenPlus化工流程模拟软件中的MultiFrac模块,对分隔壁萃取精馏塔分离正丁烷和反-2-丁烯混合物的过程进行模拟,分析了溶剂比、回流比、汽相分配比对分离效果及能耗的影响。模拟结果表明,当分离要求为正丁烷纯度大于99.0%(w),反-2-丁烯纯度大于99.9%(w)时,分隔壁萃取精馏塔主塔理论板数40,副塔理论板数10;最佳工艺条件为溶剂比2.5,主塔回流比3.5,汽相分配比2.5;分隔壁萃取精馏塔能有效避免常规萃取精馏塔内的返混效应,因此节能效果显著。与常规萃取精馏塔相比,分隔壁萃取精馏塔再沸器和冷凝器可分别节能17.31%,25.81%。  相似文献   

9.
采用Aspen Plus软件对二氯甲烷废溶剂回收分离过程进行模拟研究,确定了萃取塔(T1)的理论塔板数、萃取剂水的用量、二氯甲烷精馏塔(T2)的进料塔板位置、回流比R及理论板数等。通过萃取和精馏分离提纯了二氯甲烷废溶剂中的二氯甲烷,在工艺参数:萃取塔(T1)的理论塔板数为8,萃取剂水与二氯甲烷废溶剂质量比为0.5,二氯甲烷精馏塔(T2)理论塔板数为20,实际塔板数取30为佳,二氯甲烷溶剂从16~18块塔板进料,侧线采出二氯甲烷,回流比R为1.5时,塔顶产品二氯甲烷的质量分数≥99.70%,水分≤0.15%。  相似文献   

10.
采用Aspen Plus模拟软件,对乙苯脱氢装置的反应产物进行了全流程的模拟分离,并对初分塔、苯乙烯塔、脱乙苯塔和苯回收塔的关键参数进行了优化设计.结果表明:初分塔的塔板数为80,最佳进料位置为第36块理论板,塔顶采出量为3 764 kg/h,回流比为7.7;苯乙烯塔的塔板数为14,最佳的进料位置为第6块理论板,塔顶采...  相似文献   

11.
提出了采用隔离壁塔分离丙烯-丙烷的新工艺。采用Aspen Plus软件中的MultiFrac模型对其进行了模拟计算。在主塔理论板数55;副塔理论板数11的情况下,利用灵敏度分析模块分析了乙腈含水量、溶剂比、回流比、分配比对分离效果的影响。结果表明,隔离壁萃取精馏塔的适宜工艺条件为:乙腈中含水质量百分数14%;溶剂比5.2;主塔回流比8;分配比4∶1。与常规精馏和常规萃取精馏工艺进行了对比,完成相同的分离任务,该新工艺比常规精馏和常规萃取精馏工艺分别节能39%、20%。  相似文献   

12.
合成醋酸甲酯浆料催化精馏过程的模拟研究   总被引:1,自引:1,他引:0  
张丹  曲宇霞  许春建  周明 《石油化工》2005,34(8):754-760
以醋酸甲酯合成为模型反应,研究浆料催化精馏过程。对浆料催化精馏过程建立拟均相稳态平衡级模型,用A spen P lus软件进行模拟。考察精馏塔内温度分布、汽液相组成及流率情况,得到醋酸中水含量、反应段塔板数和液相持液量对合成醋酸甲酯收率和塔顶醋酸甲酯纯度的影响。计算得出在模拟实验塔内优化操作条件为:23块理论板数,醋酸进料口和甲醇进料口分别位于第7和第17块理论板;酸与醇的摩尔比为1.2∶1.0;催化剂与醋酸的质量比为0.03;回流比1.3;塔板总持液量2 560mL;塔釜持液量1 200mL;控制塔顶采出流率0.485。在此条件下,醋酸甲酸收率大于95%,塔顶产品中酯的质量分数大于96%。  相似文献   

13.
叶青  钱春键  裘兆蓉 《石油化工》2007,36(11):1134-1138
采用隔壁精馏塔分离苯-甲苯-对二甲苯物系,用Aspen Plus软件模拟了隔壁精馏塔内温度分布及液相组成分布,考察了汽相和液相分配比对产品纯度的影响。对隔壁精馏塔模拟得到的优化操作条件为:隔壁精馏塔的理论板数为30块,侧线采出在第14块理论板,进料段为15块理论板,在进料段的第7块理论板进料,进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1,回流比为8.8,液相分配比为2.96,汽相分配比为0.83。在此条件下,各组分的摩尔分数大于98.5%,与实验结果基本吻合。当进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1时,采用隔壁精馏塔可比常规两塔流程节能27.18%。  相似文献   

14.
采用分隔壁萃取精馏塔,研究了一塔式分离苯-环己烷体系。选用环丁砜作为萃取剂,通过加入助溶剂邻二甲苯获得合适的塔釜温度,有效防止环丁砜受热分解。考察了萃取剂/进料质量比、两侧回流比、萃取剂进料温度、助溶剂含量等因素对该分离装置分离效果的影响。结果表明,在主塔回流比为1、苯精馏侧回流比为2.5、萃取剂/进料质量比为6.8、溶剂进料温度为75℃时,环己烷产品中环己烷质量分数为97.15%、苯产品中苯质量分数为96.23%。获得的分隔壁萃取精馏塔的相关参数为进一步改进装置提供了依据。由于采用一塔式分离苯-环己烷,降低了设备投资;与常规萃取精馏相比,节能13.4%。  相似文献   

15.
针对发酵法的丙酮-丁醇精馏工艺中能耗较高的问题,提出一个优化方案:在醪塔增加一个侧线出料,醪塔的侧线与塔顶出料分别从不同位置进入丁醇塔,并增加丁醇塔的塔高,同时将丁醇塔内的分相罐移至塔外。采用PRO/Ⅱ化工流程模拟软件对优化后的丁醇塔进行模拟计算,考察了理论塔板数、进料位置、回流比对分离性能的影响。优化的丁醇塔为40块理论塔板,两股进料位置分别为第8块和第14块理论塔板,回流比为4。在此条件下,丁醇塔塔顶馏出物中水的质量分数由8.56%降为2.18%,丁醇的质量分数由2.71%降为微量,蒸汽消耗量与原丁醇塔相比降低了52.6%。工业试运行结果与优化结果吻合良好。  相似文献   

16.
以水为萃取剂对二氯甲烷-丙酮混合物进行了萃取精馏过程模拟,体系的气-液平衡和液-液平衡分别采用Wilson模型和NRTL模型预测。分析了总理论板数,回流比,萃取剂进料速率、塔板数、温度和原料进料塔板数、温度等操作参数对精馏过程的影响。并取得了最佳工艺参数为:萃取塔采用36块理论板,回流比为3,原料在第16块板进料,萃取剂用量1 500kg/h,第7块板进料时塔顶得到二氯甲烷-水的共沸物,分层得99.9%的二氯甲烷,塔釜得到丙酮-水的混合物进入丙酮塔;丙酮塔为简单精馏塔,采用35块理论板,回流比为4,第25块板进料,塔顶可得99.7%的丙酮,塔釜得到几乎纯净的水,经冷却后可用作萃取塔的萃取水,循环套用。  相似文献   

17.
胡松  杨卫胜 《石油化工》2013,42(7):775-779
采用化工流程模拟软件Aspen Plus,以NRTL模型计算气液平衡,对萃取精馏分离环氧丙烷-水-甲醇混合物的过程进行模拟。选择1,2-丙二醇为萃取剂,考察了萃取剂与原料的质量比(溶剂比)、萃取精馏塔理论塔板数、粗环氧丙烷进料位置、萃取剂进料位置、萃取剂进料温度和回流比对分离效果的影响。模拟结果表明,在满足环氧丙烷产品纯度为99.99%(w)的条件下,优化的工艺条件为:溶剂比0.45,萃取精馏塔理论塔板数30块,粗环氧丙烷进料位置第20块塔板,萃取剂进料位置第5块塔板,萃取剂进料温度45℃,回流比0.14。在此工艺条件下,环氧丙烷回收率为99.99%,单位产品热负荷为0.936 GJ/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号