首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silica is regarded as a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity. However, large volume variation and poor electrical conductivity are limiting factors for the development of SiO2 anode materials. To solve this problem, combining SiO2 with a conductive phase and designing hollow porous structures are effective ways. In this work, The Co(II)-EDTA chelate on the surface of diatom biosilica (DBS) frustules and obtained DBS@C-Co composites decorated with Co nanoparticles by calcination without a reducing atmosphere is first precipitated. The unique three-dimensional structure of diatom frustules provides enough space for the volume change of silica during lithiation/delithiation. Co nanoparticles effectively improve the electrical conductivity and electrochemical activity of silica. Through the synergistic effect of the hollow porous structure, carbon layer and Co nanoparticles, the DBS@C-Co-60 composite delivers a high reversible capacity of >620 mAh g−1 at 100 mA g−1 after 270 cycles. This study provides a new method for the synthesis of metal/silica composites and an opportunity for the development of natural resources as advanced active materials for LIBs.  相似文献   

2.
葛胜涛  邓先功  毕玉保  王军凯  李赛赛  韩磊  张海军 《材料导报》2018,32(13):2195-2201, 2213
多孔材料具有孔隙率高、比表面积大、导热系数低、体积密度小及化学性质稳定等优点,在吸附与分离、催化剂载体、隔热材料、能量储存、传感器等领域拥有广阔的应用前景。基于孔直径的大小可将多孔材料分为三类:孔径大于50nm的大孔材料(Macroporous materials),孔径介于2~50nm的介孔材料(Mesoporous materials)和孔径小于2nm的微孔材料(Microporous materials)。但是,由于孔径的限制,这三类材料的应用均存在一定的局限性。多级孔材料兼具通透性好、孔隙结构发达、体积密度小、比表面积和孔体积大等优点,打破了传统单级孔材料孔结构单一的局限,因此越来越受到研究人员的关注。然而,多级孔材料在制备中仍存在较多问题。例如,其合成过程通常会涉及到两种及两种以上的方法,制备工艺复杂;现有的多级孔材料的制备成本高,孔结构难以控制。因此,研究者们主要从优化多级孔材料的制备工艺以及降低生产成本等方面入手,制备出孔径均一且可控的多级孔材料。多级孔材料主要有大孔-介孔材料(Macro-mesoporous materials)、微孔-介孔材料(Micro-mesoporous materials)以及含有两种或多种不同孔径的介孔-介孔材料(Meso-mesoporous materials)。大孔-介孔材料常见的制备方法有模板法、发泡法、溶胶-凝胶法及熔盐法等;微孔-介孔材料的主要制备方法有化学活化法、模板法和水热法等;介孔-介孔材料的制备方法主要有水热法、模板法、溶胶-凝胶法及自组装法等。本文综述了近年来多级孔材料的最新研究进展,分别对大孔-介孔、微孔-介孔及介孔-介孔材料的制备方法进行了介绍,并简要分析了未来本领域研究的发展趋势。  相似文献   

3.
金属-有机框架(MOFs)是一类由金属离子/团簇和有机配体通过配位形成的具有多孔结构的无机-有机杂化材料。MOFs具有比表面积高、孔径均一、结构可调等优点,受到了人们的广泛关注。然而,MOFs的导电性和稳定性较差,制约了其应用的进一步拓展。以MOFs作为前驱体,通过水热反应或煅烧得到组成、形貌、结构可调的MOFs衍生材料,既能够保持MOFs材料结构多样性和多孔性的特点,又能有效提高其导电性和稳定性,近年来已成为该领域的研究热点。然而,MOFs衍生材料单一的组成和结构,使其能够提供的性能(如电容性能、催化性能)有限,极大地限制了其相关应用的发展。因此,近几年除了研究制备各种不同MOFs衍生材料外,研究者们主要从MOFs衍生材料的组成和结构方面出发,制备出多样化且在各方面应用中(如储能器件、催化)表现出优异性能的材料。MOFs衍生材料作为性能优异的应用型材料,其研究较为成熟的组成和结构分别主要包括多孔碳、金属氧化物、金属硫化物、金属磷化物、金属氢氧化物以及纤维状结构、中空结构、核壳结构等。MOFs衍生材料不仅具有高的比表面积、均一的孔径分布,通常还结合了衍生多孔碳的高导电性及其他衍生材料(金属化合物或掺杂的金属原子及杂原子,如N、P、S等)的优异性能(如电容性能、催化性能),从而发挥出更加优异的性能。其中,MOFs衍生金属化合物材料具备多孔结构,能够提供优异的容量性能及催化性能等,且其性能通常优于通过其他方法制备得到的同种材料。从结构方面出发,近几年,研究者们通过调控前驱体结构亦或是反应条件,制备得到多种不同结构的MOFs衍生材料。一方面,部分制备得到的结构(如核壳结构、中空结构)可以缓解MOFs衍生材料在使用过程中所受到的冲击,从而表现出优异的循环性能。另一方面,通过调控MOFs衍生材料的结构,使其活性位点得到充分的暴露,从而使其性能得到最大化的发挥。本文综述了MOFs衍生材料的研究进展,包括组成特点、结构调控,及其在储能器件、催化领域的应用,最后阐述了MOFs衍生材料研究领域当前面临的挑战以及未来的发展前景。  相似文献   

4.
Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed.  相似文献   

5.
Graphene possess extremely high thermal conductivity, and they have been regarded as prominent candidates to be used in thermal management of electronic devices. However, addition of graphene inevitably causes dramatic decrease in electrical insulation, which is generally unacceptable for thermal interface materials(TIMs) in real electronic industry. Developing graphene-based nanocomposites with high thermal conductivity and satisfactory electrical insulation is still a challenging issue. In this study,we developed a novel hybrid nanocomposite by incorporating silica-coated graphene nanoplatelets(Silica@GNPs) with polydimethylsiloxane(PDMS) matrix. The obtained Silica@GNP/PDMS composites showed satisfactory electrical insulation(electrical resistivity of over 10~(13)Ωcm) and high thermal conductivity of 0.497 W m-1K-1, increasing by 155% compared with that of neat PDMS, even higher than that of GNP/PDMS composites. Such high thermal conductivity and satisfactory electrical insulation is mainly attributed to the insulating silica-coating, good compatibility between components, strong interfacial bonding, uniform dispersion, and high-efficiency heat transport pathways. There is great potential for the Silica@GNP/PDMS composites to be used as high-performance TIMs in electronic industry.  相似文献   

6.
纳米SiO2改性聚酰亚胺的研究进展   总被引:4,自引:1,他引:4  
聚酰亚胺(PI)作为一种功能材料,具有良好的介电性、优良力学性能,已被广泛应用于航空航天及微电子领域,但其明显的吸水性和热膨胀性限制了其在高温和精密状态下的应用。纳米SiO2具有很低的热膨胀系数和较低的吸水性,非常适合于对PI的改性。介绍了纳米SiO2的生产原理、纳米SiO2/PI复合材料的制备方法、性能及其在气体分离膜、光电材料、摩擦材料及包装材料方面的应用,并对这类材料的研究方向提出了自己的建议。  相似文献   

7.
The major advances in the field of the designed construction of hierarchically structured porous inorganic or hybrid materials wherein multiscale texturation is obtained via the combination of aerosol or spray processing with sol-gel chemistry, self-assembly and multiple templating are the topic of this review. The available materials span a very large set of structures and chemical compositions (silicates, aluminates, transition metal oxides, nanocomposites including metallic or chalcogenides nanoparticles, hybrid organic-inorganic, biohybrids). The resulting materials are manifested as powders or smart coatings via aerosol-directed writing combine the intrinsic physical and chemical properties of the inorganic or hybrid matrices with defined multiscale porous networks having a tunable pore size and connectivity, high surface area and accessibility. Indeed the combination of soft chemical routes and spray processing provides "a wind of change" in the field of "advanced materials". These strategies give birth to a promising family of innovative materials with many actual and future potential applications in various domains such as catalysis, sensing, photonic and microelectronic devices, nano-ionics and energy, functional coatings, biomaterials, multifunctional therapeutic carriers, and microfluidics, among others.  相似文献   

8.
The family of two‐dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal‐like electrical conductivity and surface‐functional‐group‐enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3C2Tx ) nanocomposites with one‐dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g?1 and a high conductivity of 295 S cm?1. It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro‐supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.  相似文献   

9.
Stretchable conductive nanocomposites fabricated by integrating metallic nanomaterials with elastomers have become a vital component of human‐friendly electronics, such as wearable and implantable devices, due to their unconventional electrical and mechanical characteristics. Understanding the detailed material design and fabrication strategies to improve the conductivity and stretchability of the nanocomposites is therefore important. This Review discusses the recent technological advances toward high performance stretchable metallic nanocomposites. First, the effect of the filler material design on the conductivity is briefly discussed, followed by various nanocomposite fabrication techniques to achieve high conductivity. Methods for maintaining the initial conductivity over a long period of time are also summarized. Then, strategies on controlled percolation of nanomaterials are highlighted, followed by a discussion regarding the effects of the morphology of the nanocomposite and postfabricated 3D structures on achieving high stretchability. Finally, representative examples of applications of such nanocomposites in biointegrated electronics are provided. A brief outlook concludes this Review.  相似文献   

10.
Metal ion templating in a sol-gel synthesis is used to develop multiligand 8-hydroxyquinoline binding sites in porous silica structures. The acid-base equilibria and the metal ion binding equilibria and stoichiometry of these materials are investigated by in situ Raman spectroscopy. This technique is capable of resolving spectral responses of the free ligand and its acid-base forms along the monomeric and dimeric ligand complexes with Cu2+. The proton-transfer equilibrium constants and first ligand binding equilibrium constant to Cu2+ for the metal ion-templated silica are equivalent to surface-immobilized 8HQ on silica gel. The second ligand binding constant to Cu2+, however, is comparable to the first ligand binding constant, which differs from free-solution behavior, where an order of magnitude smaller value is expected. The free energy available for binding the second ligand within the templated material is comparable to the first ligand, probably due to the nearly optimal location of the second ligand for binding, based on the templating that is done during this synthesis. The metal ion concentration responses of sol-gels prepared with varying amounts of metal ion during the syntheses were also tested, and the results indicate control over the fraction of templated binding sites.  相似文献   

11.
Cu nanowires (CuNWs) are considered as a promising candidate to develop high performance metal aerogels, yet the construction of robust and stable 3D porous structures remains challenging which severely limits their practical applications. Here, graphene‐hybridized CuNW (CuNW@G) core–shell aerogels are fabricated by introducing a conformal polymeric coating and in situ transforming it into multilayered graphene seamlessly wrapped around individual CuNWs through a mild thermal annealing process. The existence of the outer graphene shell reinforces the 3D bulk structure and significantly slows down the oxidation process of CuNWs, resulting in improved mechanical property and highly stable electrical conductivity. When applied in electromagnetic interference shielding, the CuNW@G core–shell aerogels exhibit an average effectiveness of ≈52.5 dB over a wide range (from 8.2 to 18 GHz) with negligible degradation under ambient conditions for 40 d. Mechanism analysis reveals that the graphene shell with functional groups enables dual reflections on the core–shell and a multiple dielectric relaxation process, leading to enhanced dielectric loss and energy dissipation within the core–shell aerogels. The flexible core–shell‐structured CuNW@G aerogels, with superior mechanical robustness and electrical stability, have potential applications in many areas such as advanced energy devices and functional composites.  相似文献   

12.
铬酸镧是最有希望的固体氧化物燃料电池陶瓷连接材料,但存在空气中烧结活性差、中温电导率低等缺陷。利用微波辅助Sol-gel工艺成功制备了La0.7Ca0.3CrO3-δ高活性超细粉体,粉体粒径分布集中,900℃煅烧后的粉体在1400℃空气中烧结4h获得了高达96.3%的相对密度。烧结体具有优良的电导性能,850℃达到63.6S/cm,远高于文献报道值,完全能够满足中温燃料电池(IT-SOFCs)的使用要求。  相似文献   

13.
ZnO:SiO2 films are intensively investigated for optical and electronic applications. Additionally, porous ZnO:SiO2 films are of great interest as catalyst and gas-sensing materials. The sol-gel method is an efficient and low-cost process for the deposition of meso- and microporous silica-based films. The present paper studies the effect of the withdrawal speed on the microstructure and optical properties of mesoporous ZnO:SiO2 films obtained by the sol-gel method. The morphology of the films was investigated by atomic force microscopy and the overall structure was studied by X-ray diffraction. The structure and size of the zinc oxide nanoparticles embedded in the silica matrix were investigated in more detail by transmission electron microscopy. These techniques showed ZnO:SiO2 films with crack-free mesoporous morphology and highly efficient embedding of ZnO nanoparticles with (100) preferred orientation. Furthermore, the optical transmittance (in the visible and near infrared regions) and the optical band gap value were observed to vary with withdrawal speed. It is shown that ZnO:SiO2 nanocomposites films which possess ZnO particles exhibiting a (100) orientation, with possible special applications in non-linear optics, could be prepared by the low-temperature crystallization sol-gel method.  相似文献   

14.
Though generally considered insulating, recent progress on the discovery of conductive porous metal–organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal–organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high‐quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self‐assembled monolayer substrate modification and bottom‐up techniques are used to produce preferentially oriented, ultrathin, conductive films of Cu‐CAT‐1. The approach permits to fabricate and study the electrical response of MOF‐based devices incorporating the thinnest MOF film reported thus far (10 nm thick).  相似文献   

15.
利用介孔组装,可以进行纳米复合材料结构和功能设计。通过溶胶-凝胶方法,采用混合、浸泡和氢热还原工艺,获得纳米镍/介孔二氧化硅复合材料。运用DSC、XRD、XPS、TEM等手段对纳米镍/介孔二氧化硅复合材料进行表征。结果表明,纳米金属Ni颗粒的尺寸由介孔SiO2的结构和孔径分布决定,受还原温度和成分等影响,在8~20nm范围变化,浸泡法更容易获得纳米金属颗粒均匀分布的复合材料。由于SiO2介孔结构连通,纳米Ni表面存在氧化,纳米颗粒存在于介孔中形成壳结构。介孔二氧化硅基体中添加稀土元素Ce,有利于增强介孔基体骨架强度,限制纳米颗粒聚集长大。   相似文献   

16.
多孔碳材料在催化、吸附、能源领域具有广泛的应用价值,它具有比表面积大、导电和导热性高、化学稳定好、价格便宜等特点,受到了人们的广泛关注.综述了氧化硅模板法制备多孔碳材料的研究进展,并简要地阐述了各种氧化硅为模板制备多孔碳材料的制备过程和优缺点.最后总结和展望了目前的研究现状和今后的发展.  相似文献   

17.
常压干燥法制备炭气凝胶   总被引:7,自引:3,他引:7  
炭气凝胶是一种具有交联状结构的新型纳米多孔材料,它是用溶胶-凝胶法和超临界干燥工艺制成的有机气凝胶(RF)经炭化得到的。它具有比表面积大和电导率高等特性,可用作超级电容器和可充电电池理想的电极材料。通过优化传统制备炭气凝胶的工艺,成功地在常压条件下制备出了高RC比(间苯二酚为催化剂的摩尔比)的RF气凝胶和炭气凝胶。用扫描电子显微镜(SEM)、比表面积测试与孔径分布(BET)等方面对其微结构进行了研究。结果表明,常压干燥法制备的炭气凝胶具有纳米网络结构和大比表面积。用常压干燥代替了超临界干燥,大大降低了制备成本,扩展了其应用前景。  相似文献   

18.
Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles.Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene and carbon nanotubes.Yet,their relatively low electrical conductivity may restrict their performance at ultrahigh charging rate.Here,we report the fabrication of a porous titanium nitride(TiN)paper as an alternative electrode material for ultrafast-charging devices.The TiN paper shows an excellent conductivity of 3.67×104 S m−1,which is considerably higher than most carbon-based electrodes.The paper-like structure also contains a combination of large pores between interconnected nanobelts and mesopores within the nanobelts.This unique electrode enables fast charging by simultaneously providing efficient ion diffusion and electron transport.The supercapacitors(SCs)made of TiN paper enable charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte.It has an outstanding response time with a characteristic time constant of 4 ms.Significantly,the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles,which is much better than the stability performance reported for other metal nitride SCs.Furthermore,the device shows great promise in scalability.The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices.  相似文献   

19.
Plasticized poly(l-lactide)-silica nanocomposite materials have been successfully synthesized by sol-gel process. The resultant nanocomposites were characterized by infrared spectra (IR), X-ray diffraction (XRD), thermogravimetry (TG), Tensile testing and scanning electron microscope (SEM). IR measurements show that vibration of C-O-C group is confined by silica network. Also the crystallization of poly(l-lactide) is partly confined by silica network. The presence of even small amount of silica largely improves the tensile strength of the samples. TGA results reveal that the thermal stability of samples is improved with silica loading.  相似文献   

20.
This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号