首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于稀疏分解的图像去噪   总被引:2,自引:0,他引:2  
基于稀疏分解的图像去噪处理是将被噪声污染的图像分解成图像的稀疏成分和其他成分。稀疏成分对应于图像中的有用信息,其他成分对应于图像中的噪声。由图像的稀疏成分重建图像,可达到去除图像噪声的目的。实验结果表明基于稀疏分解的图像去噪处理具有一定的效果。  相似文献   

2.
基于PDE和小波分解的SAR图像去噪研究   总被引:1,自引:1,他引:1  
小波变换的优点在于其能够聚焦到图像的细微变化,并且有快速算法可以在短时间内完成其分解和重构。偏微分方程的各向异性扩散能够很好地保留边缘和细节,但是由于SAR图像数据过大导致其迭代次数的增加,使计算时间过长,算法效率降低。利用小波具有快速变换和"变焦距"的特性与偏微分方程的各向异性扩散模型相结合的方法对SAR图像固有的相干斑进行去噪。实验结果证明,该方法不但具有很强的抑制噪声的能力、很好地保持图像边缘和细节,而且提高了处理噪声的效率。  相似文献   

3.
稀疏表示选择最佳线性表示重构信号,可避免合成孔径雷达(SAR)目标识别中的方位角估计难题,同时减轻强相干噪声影响。稀疏字典选择是稀疏表示中的关键问题之一,该文提出分别使用级联方式和并联方式构造稀疏字典实现SAR目标识别。首先对训练样本进行对数归一化处理,使用主成分分析(PCA)特征提取和降维;然后对处理后的数据分别组成级联字典和并联字典,采用截断牛顿内点法(TNIPM)获得目标的稀疏表示;最后,在两种字典的稀疏表示框架下设计分类器对SAR目标识别。通过对比实验,验证了该文的字典构建方式在稀疏表示框架下对SAR目标识别的有效性。  相似文献   

4.
结合稀疏表示和投影正则化方法,提出了一种将图像分解为纹理和结构部分的新方法.该方法的基本思想是用两个适当的字典:一个用来描述纹理部分——对偶树复小波变换,另一个用来描述结构部分——基于投影正则化方法的二代曲线波变换,其中投影正则化方法可以很好地指引分解过程, 减少伪吉布斯现象.这两个字典本身是互不相关的,只对它们所描述的部分得到稀疏表示,对另外一部分得不到稀疏表示.实验结果表明, 该算法即节省了运算时间, 又很好地将图像的纹理和结构分开,特别是当图像含有噪声时,它可以很好地将纹理和噪声分开.  相似文献   

5.
为了大概率地保持信号信息的完整性,观测矩阵被设计得倾向于随机矩阵.但这种随机性也导致有用的信息和无用的信息被接近等概率地测量,降低了感知效率.为了提高观测效率,提出了利用参考信号进行经验模态分解构造观测矩阵的方法--本征模函数循环矩阵.基于Gersgorin圆盘定理证明了该矩阵满足约束等距性条件.以信号降噪效果为衡量标准,仿真了该矩阵的信号降噪过程,结果表明,为参考信号添加一定程度的噪声后形成的观测矩阵,对降噪有更佳的效果; 对于含噪信号与参考信号在时域有错位的情况,虽然在时域上的降噪效果与理想情况有明显的降低,但仍能够更好地凸显信号的频域特征,具有实用价值.  相似文献   

6.
具有间断事件检测和分离的经验模态分解方法   总被引:2,自引:0,他引:2  
针对在经验模态分解(EMD)筛选过程中间断信号引起的模态混叠问题,提出了一种新的解决方法.该方法为根据间断过程信号与正常背景信号时间尺度的不同,利用固有模态函数(IMF)的瞬时频率特性实现间断信号的精确定位,依据定位的间断信号段经端点延拓重新做EMD分离出间断信号,从而在后续的EMD中消除该间断信号的影响.将该方法与小波法消除间断信号的结果进行了比较,显示其滤除结果的信号失真较小,并可将间断信号分解为一固有模态函数.  相似文献   

7.
针对因非负矩阵分解模型目标函数非凸而出现局部次优基特征平滑的现象,提出基于特征再分解的数据稀疏表示方法,在多种先验正则信息约束下初步挖掘原始数据的潜在特征,再秉承非负加性线性表示方式的"局部构成整体"的认知优势,利用非负矩阵分解对特征突显的信息再次凝练,获取数据潜在本征信息,实现非负数据稀疏表示.算法在合成的Swimmer和人脸图像数据的实验结果表明,与传统非负矩阵分解方法相比,该方法的基特征稀疏性得到增强,且判别能力也获得显著提高.  相似文献   

8.
时间序列预测方法广泛应用于各个领域。对非平稳非线性时间序列预测方法进行了研究,利用经验模态分解法将此类序列分解为平稳时间序列,然后选择合适的步长,应用机器学习算法对各个平稳子序列进行预测,各个子序列的预测值之和即为原序列的预测值。将该方法应用于楼宇等电能能耗数据,实验结果表明,基于经验模态分解方法的时间序列预测方法精度较高,适用于预测非线性非平稳时间序列。  相似文献   

9.
在低频模拟信号采集及处理电路中,常常存在着噪声与直流漂移的问题影响信号的测量。为了从原始信号中准确去除直流漂移分量及存在的噪声从而获得有用信号,提出了一种基于分段经验模态分解直流漂移消除的方法,并通过合适且有效的去噪方法处理使得采样信号更加真实准确。首先,对信号进行经验模态分解,求取本征模态函数分量的局部极值点进行区间分段,之后分别对每一段信号再次进行经验模态分解,选取每一段信号的低频分量重构出该段信号的直流漂移分量。最后,利用自相关函数筛选出噪声占主要成分的本征模态函数分量进行能量分析,将所有分段整合,得到去除直流漂移且降噪之后的信号。本研究通过仿真对此方法进行了说明,比较了该方法与多项式拟合、小波分析、高通滤波等方法的效果。并对微创外科手术机器人力传感器的应变信号进行了处理。实验结果表明:按照已有数据计算可将信噪比提升到6.39 dB以上,均方根误差有明显减少;该方法能够有效消除应变信号中的直流漂移,并且也能达到降噪的目的。  相似文献   

10.
国内基本型乘用汽车(轿车)的销售量受宏观经济、消费政策、消费者收入水平等因素影响,呈现明显非线性、非平稳性特征.运用经验模态分解(EMD)方法,将汽车销量时间序列分解为若干本征模函数(IMFn)和一个残差序列(R);将各分量重组为高、低频序列和趋势项,分别运用差分自回归移动平均模型(ARIMA)进行预测,累积预测结果为...  相似文献   

11.
针对经验模态分解(EMD)过程中存在的模态混叠等问题,提出了一种基于最优特征的自适应白噪声平均总体经验模态分解方法。该方法采用基于边界局部均值延拓的方法抑制端点效应问题,同时,在经验模态分解的每个阶段自适应地添加有限次白噪声,保证在平均次数相对少的情况下,通过计算唯一残余分量来获取信号的固有模态函数,从而避免了模态混叠问题的产生。通过分析仿真信号和实测信号,证明了该方法对模态混叠现象有一定的抑制作用,同时可有效避免端点效应问题的产生。  相似文献   

12.
提出了一种采用稀疏非负矩阵分解(NMF)的大转角成像方法.首先将全孔径划分为若干相互重叠的子孔径,然后分别使用极坐标格式算法获得不同视角下的子图像,最终采用加入稀疏增强正则项的NMF算法在图像域对子图像进行迭代融合,获得目标增强和信噪比更高的全孔径综合图像.仿真实验结果验证了该方法的有效性.  相似文献   

13.
提出了一种基于经验模式分解(EMD)和支持向量机(SVM)的传感器故障诊断方法,该方法对传感器输出信号进行经验模态分解,将其分解为若干个固有模态函数(IMF),对每个IMF通过一定的削减算法增强故障特征,然后计算每个IMF和残余项的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。通过压力传感器的故障诊断结果表明,该方法能有效的应用于传感器的故障诊断中。  相似文献   

14.
受水流及船舶发动机干扰,水域地震反射法勘探资料判别异常体存在很大的困难,本文采用经验模态分解方法获得地震记录的多阶本征模态函数,每一阶本征模态函数代表了信号在某一特征尺度上的信息,为地震数据的处理和解释提供了更多的参考信息。实例证明,基于经验模态分解的地震反射数据处理方法,有助于压制随机噪声,提高地震反射数据的解释精度和准确性。  相似文献   

15.
经验模态分解(EMD)是由Huang等发展的一种新的数据分析方法,但在利用样条插值获得上下包络过程中存在着棘手的端点问题。文章在该问题已有解决方法的基础上,提出了基于极值点单调性一致的EMD端点问题处理方法。根据信号的极值序列查找与数据末端极值的差值和同时具备最小、单调性一致且在单调性内的点数相等三个条件的极值序列,进而构造方程组进行极值预测。通过与其他两种方法的对比验证,证明了提出的方法可以有效抑制端点效应。  相似文献   

16.
采用经验模态分解和滚动神经网络相结合的方法对风电功率时间序列进行短期预测。通过经验模态分解将信号分解成有限个固有模态函数(IMF)之和,利用多个神经网络对各IMF进行预测,同时采用滚动学习的方法修改权值和阈值,最后重构得到完整的预测结果。通过对内蒙古赛罕坝风电场的发电功率进行仿真预测,证实了该模型的有效性,与persistence模型相比较,平均绝对误差从12.55%降低到10.20%。  相似文献   

17.
基于高次样条插值的经验模态分解方法研究   总被引:3,自引:2,他引:3  
基于经验模态分解(EMD)方法,把一列时间序列数据分解成一组本征模函数组,然后经希尔伯特变换获得其希尔伯特谱.在现有的采用三次样条插值的EMD算法基础上,提出了基于高次样条插值的EMD新算法.仿真研究结果表明,所提出的新算法能有效提高EMD时频分析的精度.  相似文献   

18.
将一维经验模式分解方法直接应用于二维图像处理中,提出了基于一维经验模态分解图像细节提取方法。首先将二维图像按行或列展开为一维向量;然后用一维经验模态分解方法进行分解。为了有效地得到二维图像在水平方向和垂直方向的细节信息,提出了在进行一维经验模态分解过程中对残余图像交叉使用行和列展开的方式。最后通过实验证明了该方法的可行性和有效性。  相似文献   

19.
为了保证对多个地面运动目标同时进行合成孔径雷达成像时具有足够的响应动态范围,提出了一种基于参数化贝叶斯机器学习的压缩感知稀疏表示方法,在对运动目标稀疏特征增强的同时可以显著地提高多目标合成孔径雷达成像的响应动态范围。首先,利用渐进线性的吕氏分布时频表示方法获得多运动目标的多普勒调制参数,并构建二阶多项式傅里叶字典; 然后,针对该字典可能导致的压缩感知有限等距特性欠佳的问题,研究利用字典的互相关度进行定量评估; 最后,引入地面运动目标相对背景杂波的稀疏先验概率分布,建立层级贝叶斯模型,应用变分贝叶斯期望最大算法实现合成孔径雷达地面运动目标成像的稀疏表示,同时对可能存在的目标高阶运动和载机运动误差造成的相位失调进行校正,以保证运动目标雷达图像的聚焦性能。仿真及实测数据的处理结果验证了应用该方法可以显著地提升多目标成像响应动态范围,相比传统方法具有明显的优越性。  相似文献   

20.

滚动轴承是旋转机械的重要零部件,当发生早期故障时,难以有效地提取其微弱的故障特征.针对这一问题,提出了优化参数K取值的变分模态分解(variational mode decomposition,VMD)早期故障诊断方法.首先,通过瞬时频率均值判断法确定模态数K的取值,然后用VMD方法对采集的轴承故障信号进行处理.通过筛选轴承故障信号分解得到本征模态函数分量,对其中的敏感分量进行包络谱分析,从而判断轴承的故障类型与严重程度.最后,分别比较EMD和原VMD算法得到的结果.结果表明:优化后的VMD算法能成功地提取滚动轴承早期故障特征,实现轴承早期故障诊断.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号