共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
交通标志识别是智能驾驶的关键技术,要满足识别准确率高和识别速度快的要求。为了提升交通标志的识别准确率和识别速度,提出基于卷积神经网络的交通标志识别算法,设计了一种准确率高、速度快的识别模型用于交通标志识别。该模型使用了改进的Inception模块以及多尺度特征融合方式增强网络的特征提取能力,采用批量归一化来加速网络的训练,采用全局平均池化减小模型的参数量。在GTSRB数据集上进行训练测试,识别模型的准确率达到99.6%,识别每张图片的时间为0.22ms,实验结果表明识别模型的识别准确率高,识别速度快。通过自对比实验,验证了识别模型的结构优势。与其他交通标志识别方法在GTSRB数据集上进行对比实验,识别模型的识别性能优于其他识别方法。 相似文献
3.
4.
5.
验证码作为一种安全手段,被广泛应用于互联网领域.本文提出了一种基于卷积神经网络的图像验证码识别方法,通过卷积层级联、残差学习、全局池化、分组卷积等技术手段,在保证识别准确率不受影响的前提下,大大降低了网络的参数量.本文以铁路购票网站验证码和正方教务系统验证码为例来测试模型性能.对于铁路购票网站验证码,实验结果显示本文提出的识别方法参数量最少,对图形和中文词组验证码的识别准确率分别达到98.76%和99.14%;对于正方教务系统验证码,本文方法参数量最少且识别准确率为87.30%. 相似文献
6.
传统方法无法描述火焰变化特点,导致识别错误率高,识别时间长,为获得更加理想的识别结果,设计基于卷积神经网络的火焰识别算法。采集火焰图像,对火焰图像进行预处理,提高火焰图像的清晰度,并提取火焰识别特征,采用卷积神经网络对特征和火焰状态之间的关系进行模拟,构建火焰智能识别模型。在相同测试平台下,与其他方法进行对照实验,结果表明,所提方法描述火焰的变化特点,大幅度提升火焰识别正确率,同时缩短火焰识别时间,识别整体性能明显优于经典方法,具有较高实际应用价值。 相似文献
7.
8.
针对苹果栽培品种识别分类问题,提供一个包含多个苹果果树品种的叶片图像原始数据集,并且研究构建一种新的深度卷积神经网络分类模型,对其分类准确性、泛化性能和稳定性进行对比验证,以期对苹果栽培品种简便、快速、准确的识别分类提供理论依据和技术支持。以甘肃省平凉市静宁县果树果品研究所苹果良种苗木繁育基地作为实验基地,在其中选取14个苹果果树品种。每个品种选取10棵左右树龄、树势、长势都存在差异的果树,采摘100片左右成熟的、无机械损伤的叶片,然后拍摄叶片图像建立数据集,进而利用卷积神经网络训练识别分类模型。本文针对苹果栽培品种识别分类,提供一个包含14个苹果果树品种共计14394张叶片图像的原始数据集,并且设计实现基于卷积神经网络的识别分类模型。实验结果表明,该识别分类模型有较高的准确率,训练集训练精度可以达到99.88%,验证集验证精度为94.36%,独立测试集的测试精度为90.49%。本文的研究结果可以为现代苹果田间种植及科研试验等实际场景提供力所能及的帮助,为深度卷积神经网络技术在植物品种识别分类实际应用场景提供参考,丰富深度学习在农业上的应用。 相似文献
9.
在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算法有效结合,对遥感图像展开增强处理。统计分析遥感图像目标尺度范围,通过训练和测试卷积神经网络,得到最佳目标感兴趣区域尺度。确定目标感兴趣区域最佳尺度后,构建基于卷积神经网络的遥感图像目标识别架构,完成遥感图像目标识别。通过实验分析证明,采用所提算法可以有效提升遥感图像增强效果,具有较好的遥感图像目标识别性能。 相似文献
10.
11.
新的种子点区域填充算法 总被引:3,自引:0,他引:3
传统的种子点填充算法需要大量的出栈、入栈操作,花费大量的时间和空间,而提出的算法完全避免了这些缺点。通过对100幅油区地质图的填充实验表明:无论要填充区域的形状、大小、位置如何,都能完全填充,成功率为100%。与其他填充算法相比,该算法具有流程简单,运算速度快,填充准确可靠等优点,是一种值得推广的算法。 相似文献
12.
从树 《计算机测量与控制》2017,25(9)
图像识别的主要目的是使用计算机作为工具对目标图像进行处理、解析与应用,通过数据分析检测出具有不同特征的目标和对象,发展至今其已成为了人工智能的基础。本文基于ARM嵌入式芯片提出了一种结合尺度不变特征变换匹配算法的图像识别检测系统,系统硬件部分采用模块化设计的思想以提高系统的兼容性,分为图像获取、数据采集、数据存储、图像识别等模块;软件部分采用斑点检测匹配匹配算法进行图像识别以提高图像识别速度与精度。实验结果表明所设计的系统具有识别速度快、精度高、可靠性高、故障少的特点。 相似文献
13.
传统自动光学检测(AOI)方法难以适应宇航电源生产线多品种、小批量的特点,具有识别率低、操作复杂等问题。利用卷积神经网络(CNN)学习速度快、特征提取效果好的优势,提出了一种能够对宇航电源产品质量进行可靠检验的光学检测技术。通过对历史生产数据的精细化筛选构建了训练样本库,并设计了宇航电源产品光学检验专用卷积神经网络;将Canny算子边缘检测与CNN图像识别相结合,实现了印制板装配图信息的自动读取。与传统AOI检测方法相比,该方法缺陷识别率高达99%,且检验过程简单,提高了宇航电源产品光学检验工作效率,已应用于宇航电源生产线。 相似文献
14.
15.
16.
针对传统种子填充算法无法充分利用多核处理器性能以及需要人工指定种子的不足,提出基于动态连接和并查集的并行随机种子反向填充算法。将填充任务分为随机种子生成、并行填充、连通区域识别、并行合并与反转步骤,并采用C++和CUDA-C语言分别实现各步骤的CPU和GPU版本。在此基础上,从众多参数组合中选择能发挥硬件最佳性能的参数。实验结果表明,相比传统反向填充算法,并行随机种子反向填充算法能充分利用多核、异构处理器的多线程并行能力,在处理6种不同分辨率的单张和批量图像时获得了平均3.84倍和4.43倍的加速比,其中在处理8 KB高分辨图像时,最高取得6.05倍和7.09倍的加速比。 相似文献
17.
结合在地质勘探中的特殊应用,根据深度控制,对井下孔壁四周360°范围的柱面空间投影到像面上得到序列环带图像。根据图像拼接误差理论对相邻图像间重叠区域大小进行选定,用改进的链队列种子填充法寻找环带图像的圆心和半径方向,以一定的角度为步长遍历每一个同心圆,将环带图像展开成矩形图,再用网格匹配法进行相邻图像间的配准,采用平滑因子实现序列图像间的无缝拼接,使之更符合人的观察习惯。 相似文献
18.
本文采用AlexNet神经网络算法构建一个高速公路能见度识别的框架,通过对道路摄像头图像的采集,对图像进行标注、对AlexNet算法进行训练,提取图像能见度特征,构建能见度等级识别模型,实时接入道路摄像头图像,实现能见度值的估测。通过对安徽省高速公路42个监控摄像机进行图像的采集,抽取标注有能见度值的15万余幅样本,进行能见度识别结果分析,结果显示平均识别率达到78.02%,其中有14个站点的识别率超过90%,21个站点的识别率在80%以上。基于AlexNet算法的道路能见度估测方法能够满足道路能见度实时性和识别准确率的要求,可以作为能见度仪未安装地区的能见度辅助监测方法,同时对于光照变化、远近距离等都具有良好的鲁棒性。 相似文献
19.
目的 基于内容的图像检索方法利用从图像提取的特征进行检索,以较小的时空开销尽可能准确的找到与查询图片相似的图片。方法 本文从浅层特征、深层特征和特征融合3个方面对图像检索国内外研究进展和面临的挑战进行介绍,并对未来的发展趋势进行展望。结果 尺度下不变特征转换(SIFT)存在缺乏空间几何信息和颜色信息,高层语义的表达不够等问题;而CNN (convolutional neural network)特征则往往缺乏足够的底层信息。为了丰富描述符的信息,通常将SIFT与CNN等特征进行融合。融合方式主要包括:串连、核融合、图融合、索引层次融合和得分层(score-level)融合。\"融合\"可以有效地利用不同特征的互补性,提高检索的准确率。结论 与SIFT相比,CNN特征的通用性及几何不变性都不够强,依然是图像检索领域面临的挑战。 相似文献